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The integration of mobile health (mHealth) devices into behav-
ioral health research has fundamentally changed the way researchers
and interventionalists are able to collect data as well as deploy and
evaluate intervention strategies. In these studies, researchers often
collect intensive longitudinal data (ILD) using ecological momentary
assessment methods, which aim to capture psychological, emotional,
and environmental factors that may relate to a behavioral outcome
in near real-time. In order to investigate ILD collected in a novel,
smartphone-based smoking cessation study, we propose a Bayesian
variable selection approach for time-varying effect models, designed
to identify dynamic relations between potential risk factors and smok-
ing behaviors in the critical moments around a quit attempt. We use
parameter-expansion and data-augmentation techniques to efficiently
explore how the underlying structure of these relations varies over
time and across subjects. We achieve deeper insights into these rela-
tions by introducing nonparametric priors for regression coefficients
that cluster similar effects for risk factors while simultaneously de-
termining their inclusion. Results indicate that our approach is well-
positioned to help researchers effectively evaluate, design, and deliver
tailored intervention strategies in the critical moments surrounding
a quit attempt.

1. Introduction.

1.1. Scientific Background. The integration of mobile health (mHealth)
devices into behavioral health research has fundamentally changed the way
researchers and interventionalists are able to collect data as well as deploy
and evaluate intervention strategies. Leveraging mobile and sensing tech-
nologies, just-in-time adaptive interventions (JITAI) or ecological momen-
tary interventions are designed to provide tailored support to participants
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based on their mood, affect, and socio-environmental context (Heron and
Smyth, 2010; Nahum-Shani et al., 2017). In order to deliver theory-based
interventions at critical moments, researchers collect intensive longitudinal
data using ecological momentary assessment (EMA) methods, which aim to
capture psychological, emotional, and environmental factors that may relate
to a behavioral outcome in near real-time. In practice, JITAIs’ effectiveness
depends on accurately identifying high-risk situations by the user or by pre-
determined decision rules to initiate the delivery of intervention components.
Decision rules for efficacious interventions rely on a thorough understanding
of the factors that characterize a subject’s risk for a behavioral outcome, the
dynamics of these risk factors’ relation with the outcome over time, and the
knowledge of possible strategies to target a risk factor (Nahum-Shani et al.,
2017).

In the analysis of this paper, we investigate a behavioral health interven-
tion study that targets smoking cessation. Historically, smoking cessation
studies have used health behavior theory (Shiffman et al., 2002; Timms et al.,
2013) or group-level trends of smoking antecedents (Piasecki et al., 2013)
to determine when a JITAI should be triggered. However, this approach is
limited since current health behavior models are inadequate for guiding the
dynamic and granular nature of JITAIs (Riley et al., 2011; Klasnja et al.,
2015). Additionally, the design of efficacious smoking cessation interven-
tions is challenged by the complexity of smoking behaviors around a quit
attempt and misunderstandings of the addiction process (Piasecki et al.,
2002). More recently, smoking behavior researchers have capitalized on the
ability of mHealth techniques to collect rich streams of data capturing sub-
jects’ experiences close to their occurrence at a high temporal resolution.
The structure, as well as the complexity, of these data provide unique op-
portunities for the development and implementation of more advanced ana-
lytical methods compared to traditional longitudinal data analysis methods
used in behavioral research (e.g., mixed models, growth curve models) (Trail
et al., 2014). For example, researchers have applied reinforcement learning
(Luckett et al., 2019) and dynamic systems approaches (Trail et al., 2014;
Rivera, Pew and Collins, 2007; Timms et al., 2013) to design and assess
optimal treatment strategies using mHealth data. Additionally, Koslovsky
et al. (2018), de Haan-Rietdijk et al. (2017) and Berardi et al. (2018) have
applied hidden and observed Markov models to study transitions between
discrete behavioral states, Shiyko et al. (2012) and Dziak et al. (2015) have
used mixture models to identify latent structures, and Kürüm et al. (2016)
have employed joint modeling techniques to study the complexity of smoking
behaviors.
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Greater insights into the dynamic relation between risk factors and smok-
ing behaviors have been generated by the application of functional data tech-
niques (Trail et al., 2014; Vasilenko et al., 2014; Koslovsky et al., 2017; Tan
et al., 2012). These methods are well-suited for high-dimensional data with
unbalanced and unequally-spaced observation times, matching the format of
data collected with EMAs. They also require little assumptions on the struc-
ture of the relations between risk factors and behavioral outcomes. One pop-
ular approach uses varying-coefficient models, which belong to the class of
generalized additive (mixed) models. These semiparametric regression mod-
els allow a covariate’s corresponding coefficient to vary as a smooth function
of other covariates (Hastie and Tibshirani, 1993). For example, Selya et al.
(2015) examined how the relation between the number of cigarettes smoked
during a smoking event and smoking-related mood changes varies as a func-
tion of nicotine dependence. More frequently, penalized splines have been
employed in varying-coefficient models to investigate how the effect of a co-
variate varies as a function of time, leading to time-varying effect models
(TVEM) (Tan et al., 2012; Lanza et al., 2013; Koslovsky et al., 2017; Shiyko
et al., 2012; Mason et al., 2015; Vasilenko et al., 2014). These approaches
allow researchers to identify the critical moments that a particular risk fac-
tor is strongly associated with smoking behaviors, information that can be
used to design tailored intervention strategies based on a subject’s current
risk profile.

1.2. Model Overview. While there are various inferential challenges that
functional data analysis models can address, in the application of this paper
we focus on incorporating three recurring themes in behavioral research to
explore the relations between risk factors and smoking behaviors:

1. Model Assumptions - Numerous smoking behavior research studies
have relied on semiparametric, spline-based methods to learn the rela-
tional structure between risk factors and outcomes (Tan et al., 2012;
Vasilenko et al., 2014).

2. Variable Selection - One of the main objectives of intensive longitudi-
nal data analysis is to identify or re-affirm complex relations between
risk factors and behavioral outcomes over time (Walls and Schafer,
2005).

3. Latency - A common aim in smoking behavior research studies is to
identify latent structure in the data, such as groups or clusters of sub-
jects with similar smoking behaviors over time (McCarthy et al., 2016;
Cursio, Mermelstein and Hedeker, 2019; Geiser et al., 2013; Dziak
et al., 2015; Brook et al., 2008).
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To incorporate and expand upon these features in our analysis, we de-
velop a flexible Bayesian varying-coefficient regression modeling framework
for longitudinal binary responses that uses variable selection priors to pro-
vide insights into the dynamic relations between risk factors and outcomes.
We embed spike-and-slab variable selection priors as mixtures of a point
mass at zero (spike) and a diffuse distribution (slab) (George and McCul-
loch, 1993; Brown, Vannucci and Fearn, 1998) and adopt the formulation of
Scheipl, Fahrmeir and Kneib (2012) to deconstruct the varying-coefficients
terms, in our case time-varying effects, into a main effect, linear interac-
tion term, and non-linear interaction term. Unlike previous approaches in
behavioral health research that use time-varying effect models, our formu-
lation allows us to gain inference on whether a given risk factor is related to
the smoking behavior while also learning the type of relation. Additionally,
by performing selection on fixed as well as random effects, our method is
equipped to identify relations that vary over time and across subjects. For
this, we exploit a Pólya-Gamma augmentation scheme that enables efficient
sampling without sacrificing interpretability of the regression coefficients as
log odds ratios (Polson, Scott and Windle, 2013). Furthermore, we adopt
a Bayesian semiparametric approach to model fixed and random effects by
replacing the traditional spike-and-slab prior with a nonparametric construc-
tion to cluster risk factors that have similar strengths of association.

1.3. Just-in-Time Adaptive Interventions for Smoking Abstinence. Al-
though multiple studies have examined momentary predictors of smoking
lapse (Shiffman et al., 2000; Piasecki et al., 2003; Businelle et al., 2014),
JITAIs for smoking cessation are still nascent. Thus far, studies have used
participant-labeled GPS coordinates to trigger supportive messages to pre-
vent smoking (Naughton et al., 2016), or have tailored messages to the du-
ration and intensity of participant’s self-reported side effects while taking
varenicline (McClure et al., 2016). Using our proposed approach, we ana-
lyze ILD collected in a study investigating the utility of a novel, smartphone-
based smoking cessation JITAI (SmartT ). The SmartT intervention (Businelle
et al., 2016) uses a lapse risk estimator to identify moments of heightened
risk for lapse, and tailors treatment messages in real-time based upon the
level of imminent smoking lapse risk and currently present lapse triggers. To
our knowledge, no other studies have used EMA data to estimate risk for
imminent smoking lapse and deliver situation-specific, individually-tailored
treatment content prior to lapse.

In this study, adult smokers (N=81) recruited from a smoking cessation
research clinic were randomized to the SmartT intervention, the National
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Cancer Institute’s QuitGuide (NCI QuitGuide), or weekly counseling ses-
sions (usual care), and followed over a five-week period spanning one week
prior to a scheduled quit attempt to four weeks after. At the beginning of
the assessment period, baseline measures were collected, and subjects were
shown how to complete EMAs on a study-provided smartphone. Through-
out the assessment period, subjects completed daily diaries and received
four random EMAs from the smartphone to complete each day. For each
EMA, subjects were prompted on their recent smoking behaviors, alcohol
consumption, as well as various questions regarding their current psycholog-
ical, social, and environmental factors that may contribute to an increased
risk of smoking behaviors.

Findings indicate that our approach is well-positioned to help researchers
evaluate, design, and deliver tailored intervention strategies in the critical
moments surrounding a quit attempt. In particular, results confirm previ-
ously identified temporal relations between smoking behaviors around a quit
attempt and risk factors. They also indicate that subjects differ in how they
respond to different risk factors over time. Furthermore, we identify clus-
ters of active risk factors that can help researchers prioritize intervention
strategies based on their relative strength of association at a given moment.
Importantly, our approach generates these insights with minimal assump-
tions regarding which risk factors were related to smoking in the presence of
others, the structural form of the relation for active terms, or the parametric
form of regression coefficients.

The rest of the paper is organized as follows. In section 2, we present
our modeling approach and describe prior constructions. In section 3, we
investigate the relations between risk factors and smoking behaviors in the
critical moments surrounding a scheduled quit attempt using mHealth data.
In section 4, we conduct a simulation study investigating the variable se-
lection and clustering performance of our proposed method on simulated
data. In section 5, we evaluate prior sensitivity of our model. In section 6,
we provide concluding remarks.

2. Methods. The objective of our analysis is to identify relations be-
tween a set of risk factors (i.e., baseline and EMA items) and a binary out-
come (i.e., momentary smoking) repeatedly collected over time. For this, we
employ a Bayesian variable selection framework that allows a flexible struc-
ture for the unknown relations. We achieve this by performing selection not
only on main effects, but additionally on linear and non-linear interaction
terms as well as random effects. In this work, we refer to fixed and random
effects in the context of hierarchical or multilevel models, where fixed effects
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are constant across subjects and random effects differ at the subject-level.
We chose this terminology based on its familiarity within both frequentist
and Bayesian paradigms, but point out that the fixed or population-level
effects are treated as random variables in our model, and thus follow a prob-
ability distribution.

2.1. A Varying-Coefficient Model for Intensive Longitudinal Data Col-
lected with EMAs. Let yij ∈ {0, 1} represent momentary smoking for sub-
ject i = 1, . . . , N , and xij and zij represent P - and D-dimensional vectors of
risk factors collected on each subject at time j = 1, . . . , ni, respectively. To
maintain temporality in our particular application (see section 3 for more
details), we model the relation between momentary smoking by the next
assessment and current, potential risk factors as a varying-coefficient model
of the type

(2.1) logit(P (yi,j+1 = 1|xij , zij , uij)) =
P∑
p=1

fp(uij)xijp +α′izij ,

where fp(u) are smooth functions of a scalar covariate u, and αi represents
subject specific random effects. Similar temporal assumptions have been
made previously in smoking behavior research studies (Bolman et al., 2018;
Minami et al., 2014; Shiffman et al., 1996; Shiffman, 2013; Shiyko et al.,
2014). Note that in general, researchers may use the framework of 2.1 to
model the relation between a binary outcome and potential risk factors col-
lected concurrently, in addition to lagged trends, as is typical in longitudinal
studies (Fitzmaurice, Laird and Ware, 2012). With this formulation, we in-
clude varying-coefficient terms for each of the P risk factors based on u.
However in general, we can specify varying-coefficient terms that depend on
u′ 6= u, and thus the number of varying-coefficient terms in the full model is
not strictly P . If u is chosen to represent time, then this model is commonly
referred to as a time-varying effect model in smoking behavior research (Tan
et al., 2012; Vasilenko et al., 2014; Dziak et al., 2015; Koslovsky et al., 2017).
Note that zij is typically a subset of xij (Kinney and Dunson, 2007; Cheng
et al., 2010; Hui, Müller and Welsh, 2017) and that incorporating a 1 in xij
and zij , allows for an intercept term that varies as a function of u and a
random intercept term, respectively. Additionally, this formulation can han-
dle time-invariant risk factors, such as baseline items, by fixing xijp (zijd) to
xip (zid) for all observations j.

We approximate the smooth functions with spline basis functions. Specif-
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ically,

(2.2) fp(uij) = U ′ijφp,

where U ij is a spline basis function for uij , and φp is a rp-dimensional
vector of corresponding spline coefficients. For simplicity, the splines are
constructed with an equal number of equally spaced knots that depend on
the minimum and maximum values of u.

2.2. Penalized Priors for the Spline Coefficients. Using a combination of
variable selection and shrinkage priors, our approach generates insights on
the underlying structure of the smooth functions by reconstructing them as
the summation of main effect, linear interaction, and non-linear interaction
components. Formally, we rewrite Equation (Eq.) (2.2) as

(2.3) fp(uij) = β∗pU∗′ijξp + β◦puij + β0p,

where the constant term β0p captures the main effect of xp, β
◦
p represents the

effect of the linear interaction between u and xp, and β∗pξp is a parameter-
expanded vector of coefficients corresponding to the non-linear interaction
term.

To derive the non-linear component in Eq. (2.3), we start by penalizing
the spline functions in Eq. (2.2) with a second-order Gaussian random walk
prior following

(2.4) Uφp|s2 ∼ N(0, s2UP−U ′),

where U is a
∑N

i=1(ni−1)×rp-dimensional matrix with each row correspond-
ing to U ′ij for the ith subject at the jth assessment, s2 controls the amount
of smoothness, and P is the appropriate penalty matrix (Lang and Brezger,
2004). Next, we take the spectral decomposition of UP−U ′ =

[
U+ U◦

][
V + 0
0 0

] [
U+

U◦

]
, where U+ is a matrix of eigenvectors with correspond-

ing positive eigenvalues along the diagonal of matrix V +, and U◦ are the
eigenvectors associated with the zero eigenvalues. Now, we can re-define the
smooth functions in Eq. (2.2) as the sum of non-linear (penalized) interac-
tion, linear (non-penalized) interaction, and main effect terms as presented in

Eq. (2.3), where the penalized term is written as U∗ϕ∗p with U∗ = U+V
1/2
+ .

By assuming independent normal priors for ϕ∗p, a proper prior for the pe-
nalized terms that is proportional to Eq. (2.4) can be obtained.

We take two additional measures to enhance the computational efficiency
of the resulting MCMC algorithm. First, only eigenvalues/vectors that ex-
plain a majority of the variability in Eq. (2.4) are used to construct U∗.
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Additionally, we apply a parameter-expansion technique for the penalized
terms in fp(·), setting ϕ∗p = β∗pξp, where β∗p is a scalar and ξp is a vector with
the same dimension as ϕ∗p. This technique enables us to perform selection on
the penalized terms as a group rather than determining their inclusion sep-
arately. By rescaling β∗p and ξp at each MCMC iteration, such that |ξp| has
mean equal to one, ξp maintains the shape of the smooth function and β∗p
represents the term’s strength of association, while preserving identifiability,
similar to Scheipl, Fahrmeir and Kneib (2012).

For variable selection, we impose spike-and-slab prior distributions on the
3 ∗ P = T -dimensional vector β = (β∗1 , β

◦
1 , β01, . . . , β

∗
P , β

◦
P , β0P )′. In general,

the spike-and-slab prior distribution is composed of a mixture of a Dirac
delta function at zero, δ0(·), and a known distribution, S(·), such as a normal
with mean zero and diffuse variance (George and McCulloch, 1993; Brown,
Vannucci and Fearn, 1998). A latent indicator variable, νt, representing a
risk factor’s inclusion or exclusion in the model determines whether the risk
factor’s regression coefficient is set to zero (spike) or free to be estimated in
the model (slab). Specifically for a given coefficient βt, we assume

βt|νt ∼ νt · S(βt) + (1− νt)δ0(βt).(2.5)

To complete the prior specification for this portion of the model, we as-
sume that the slab component, S(βt), follows a N(0, τ2) with variance τ2,
and that the inclusion indicators are distributed as νt|θt ∼ Bernoulli(θt),
with prior probability of inclusion θt ∼ Beta(aνt , bνt). Integrating out θt we
obtain νt ∼ Beta-Binomial(aνt , bνt), where hyperparameters aνt and bνt are
set to control the sparsity in the model. Lastly, each element of ξp, ξpr, is
assumed to follow a N(µpr, 1), with mean µpr = ±1 with equal probability.
Placing a majority of the prior mass for each ξpr around ±1 is motivated by
the role it plays in the expansion of ϕ∗p, as described above.

2.3. Prior Specification for the Random Effects. We perform selection on
the random effects, αi, using the modified Cholesky decomposition approach
of Chen and Dunson (2003). Specifically, we reparameterize the random
effects

(2.6) αi = KΓζi,

where K a positive diagonal matrix with elements κ = (κ1, . . . , κD)′, and Γ
a lower triangle matrix with diagonal elements set to one and free elements
otherwise. To perform variable selection, we set the prior for κ to follow
a similar spike-and-slab prior distribution as in section 2.2, where the slab
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distribution S(κd) = FN(m0, v0). Here, FN represents a folded normal
distribution defined as

FN(m0, v0) = (2πv0)
−1/2 exp(−(κd−m0)

2/(2v0))+(2πv0)
−1/2 exp(−(κd+m0)

2/(2v0)),

where m0 ∈ R and v0 > 0 are location and scale parameters, respectively.
Note that we forgo the parameter-expansion approach of Kinney and Dun-
son (2007), which introduces a redundant multiplicative parameter in the
implied random effect covariance matrix, in favor of a model that enables
meaningful inference for κ and ultimiately their cluster assignments. Sim-
ilar to section 2.2, we let the corresponding inclusion indicators λd follow
a Beta-Binomial(aλd , bλd) to induce sparsity on the random effect terms.
Lastly, we assume the D(D − 1)/2-dimensional vector of free elements in Γ
follow N(γ0, Vγ) ·I(γ ∈ Z), where I represents an indicator function, and Z
represents the parameters with corresponding random effects included in the
model. For example, if the dth random effect is included (i.e., λd = 1), then
γd1, . . . , γd,d−1 and γd+1,d, . . . γD,d ∈ Z. Lastly, we assume ζi ∼ N(0, I).

2.4. Spiked Nonparametric Priors. To complete our approach, we inves-
tigate nonparametric prior constructions for the spike-and-slab components
of the reparameterized fixed and random effects by assuming that the slab
component follows a Dirichlet process (DP). These priors are commonly re-
ferred to as spiked DP (SDP) priors (Canale et al., 2017; Kim, Dahl and
Vannucci, 2009; Savitsky and Vannucci, 2010; Dunson, Herring and Engel,
2008). In the context of our model, SDP priors allow us to simultaneously
select influential risk factors while clustering effects with similar relations
to the smoking outcome. The formulation we use here is sometimes refers
to as an “outer” SDP prior, since the point mass at zero is outside of the
base distribution of the DP. Alternatively, the “inner” construction places
the spike-and-slab prior inside the DP, serving as the base distribution. The
inner formulation provides the opportunity for coefficients to cluster at zero,
but does not force a point mass at zero explicitly. As such, the likelihood
that a coefficient is assigned to the trivial cluster grows with the number of
coefficients excluded from the model. Alternatively, the outer formulation
is a more informative prior, since it explicitly assigns a point mass at zero,
and, in addition, carries less computational demands since it does not require
auxiliary variables for MCMC sampling (Neal, 2000; Savitsky and Vannucci,
2010). We refer readers to Canale et al. (2017) for a detailed explanation of
the structural differences between the two prior formulations.

First, we assume the regression coefficients associated with the main ef-
fects and linear interaction terms follow a SDP to provide insights on risk
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factors that share underlying linear trends with momentary smoking by the
next assessment over the course of the study. Specifically, we assume the
slab component in Eq. (2.5) is a Dirichlet process prior H ∼ DP (ϑ,H0),
with base distribution H0 = N(0, τ2) and concentration parameter ϑ. Fur-
thermore, we assume a hyperprior ϑ ∼ G(aϑ, bϑ), with aϑ, bϑ > 0. For the
nonlinear interaction terms, we avoid the SDP since it would produce un-
interpretable cluster assignments due to the parameter-expansion approach
taken to improve selection performance. For example, similar values for β∗t
and β∗t′ may correspond to vastly different ϕ∗t and ϕ∗t′ , depending on their
respective ξ and spline basis functions. Similarly, placing a DP prior on
the individual components in ξ, or even ϕ, would not provide interpretable
results on the overall nonlinear effect. We take a similar approach for the
random effects. Here, we assume the slab components for the diagonal ele-
ments of K, S(κd) = W , W ∼ DP (A,W0), where W0 ∼ FN(m0, v0), and
A is the concentration parameter of the DP. To complete the prior assump-
tions for the random effects portion of the model, let A ∼ G(aA, bA), where
aA, bA > 0 are shape and rate parameters, respectively.

There is evidence that relaxing parametric assumptions for random ef-
fects using DP priors may cause inferential challenges as the mean of the
random effects are non-zero almost surely (Li, Müller and Lin, 2011; Yang,
2012; Cai and Bandyopadhyay, 2017). Our approach differs in that we do
not directly replace the typical normal assumption for random effects with
a nonparametric prior. Instead, we place a nonparametric prior on the co-
variance decomposition components, K, while letting ζi follow a normal
distribution centered at zero. As such, our approach avoids any identifiabil-
ity issues with the fixed effects while still relaxing the parametric assumption
on the reparameterized random effects, KΓζi. It is important to note that
by doing this we are adopting a Bayesian semiparametric modeling struc-
ture, since the random effects are linear combinations of spiked Dirichlet
process and normal random variables (Müller, Quintana and Rosner, 2007).

2.5. Posterior Inference. For posterior inference, we implement a Metropolis-
Hastings within Gibbs algorithm. The full joint model is defined as

f(y|%,ω,x,u, z)p(ω)p(β|ν)p(ν)p(ϑ)p(K|λ)p(λ)p(A)p(ξ|µ)p(µ)p(ζ)p(Γ),

where % = {β, ξ,K,Γ, ζ}. We use the Pólya-Gamma augmentation of Pol-
son, Scott and Windle (2013) to efficiently sample the posterior distribution
for the logistic regression model. Following Polson, Scott and Windle (2013),
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we express the likelihood contribution of yi,j+1 as

f(yi,j+1|·) =
(eψij )yi,j+1

(1 + eψij )
∝ exp(ki,j+1ψij)

∫ ∞
0

exp(−ωi,j+1ψ
2
ij/2)p(ωi,j+1|ni,j+1, 0)∂ω,

where ki,j+1 = yi,j+1 − ni,j+1/2, p(ωi,j+1|ni,j+1, 0) ∼ PG(ni,j+1, 0), and
PG is the Pólya-Gamma distribution. Using the notation presented in the
previous sections, we set

ψij =
P∑
p=1

(β∗pU∗ijξp + β◦puij + β0p)xijp + z′ijKΓζi.

The MCMC sampler used to implement our model is outlined below in
Algorithm 1. A more detailed description of the MCMC steps as well as a
graphical representation of the model are provided in the Supplementary
Material. After burn-in and thinning, the remaining samples obtained from
running Algorithm 1 for T̃ iterations are used for inference. To determine
a risk factor’s inclusion in the model, its marginal posterior probability of
inclusion (MPPI) is empirically estimated by calculating the average of its
respective inclusion indicator’s MCMC samples (George and McCulloch,
1997). Note that inclusion for both fixed and random effects is determined
marginally for βt and λd, respectively. Commonly, covariates are included in
the model if their MPPI exceeds 0.50 (Barbieri et al., 2004) or a Bayesian
false discovery rate threshold, which controls for multiplicity (Newton et al.,
2004).

3. Case Study. In this section, we study the smoking behaviors in a
group of adult smokers recruited from a smoking cessation research clinic.
The overall research goal of this study was to identify and investigate the
structural form of the relations between a set of risk factors and smoking
over a five-week period surrounding a scheduled quit attempt, using intensive
longitudinal data collected with EMAs.

3.1. Data Analysis. In the study design, momentary smoking, our out-
come of interest, was defined as whether or not a subject reported smoking
in the 4 hours prior to the current EMA. However at each EMA, a subject
was prompted on their current psychological, social, environmental, and be-
havioral status. Thus to maintain temporality in this study, we assessed the
relations between momentary smoking and measurements collected in the
previous EMA. As such, regression coefficients are interpreted as the log odds
of momentary smoking by the next assessment for a particular risk factor.
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Algorithm 1 MCMC Sampler
1: Input data y,x,u,z
2: Initialize parameters: %,ω,ν,λ, ϑ,A,µ
3: Set DPβ̄ and DPK to True or False to indicate DP for slab on fixed or random effects,

respectively.
4: for iteration t̃ = 1, . . . , T̃ do
5: for i = 1, . . . , N do
6: for j = 1, . . . , ni − 1 do
7: Update ωi,j+1 ∼ PG(1, ψij)
8: end for
9: end for

10: if DPβ̄ then
11: Update cluster assignment of β̄ following Neal (2000) algorithm 2.
12: end if
13: Jointly update β and ν with Between and Within Step following Savitsky, Vannucci

and Sha (2011).
14: Update ξ from FCD N(µξ, Vξ).
15: for p = 1, . . . , P do
16: Rescale ξ∗p and β∗p so ϕ∗p remains unchanged.
17: end for
18: for p = 1, . . . , P do
19: for r = 1, . . . , rp do
20: Set µpr = 1 with probabilty 1/(1 + exp(−2ξpr)).
21: end for
22: end for
23: Update ϑ by the two-step Gibbs update of Escobar and West (1995).
24: if DPK then
25: Update cluster assignment of DPK following Neal (2000) algorithm 2.
26: end if
27: Jointly update K and λ with Between and Within Step following Savitsky, Van-

nucci and Sha (2011).
28: Update A following two-step Gibbs update of Escobar and West (1995).
29: Update Γ from FCD N(γ̂, V̂γ) · I(γ ∈ Z).
30: for i = 1, . . . , N do
31: Update ζi from FCD N(ζ̂i, V̂ζi).
32: end for
33: end for
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In this study, we investigated psychological and affective factors including
urge to smoke, feelings of restlessness, negative affect (i.e., irritability, frus-
tration/anger, sadness, worry, misery), positive affect (i.e., happiness and
calmness), being bored, anxiousness, and motivation to quit smoking. Ad-
ditionally, we investigated numerous social and environmental factors such
as whether or not the subject was interacting with a smoker, if cigarettes
were easily available (cigarette availability), and whether or not the sub-
ject was drinking alcohol (alcohol consumption). Also, we included a set of
baseline, time-invariant measures (i.e., heaviness of smoking index (HSI ),
age (years), being female, and treatment assignment) into the model. For
each of these risk factors, we included a fixed main effect, linear interaction,
and non-linear interaction term as well as a random main effect and linear
interaction term. All interactions investigated in this analysis were between
risk factors and assessment time (i.e., uij = tij), and tij were centered so
that t = 0 represents the beginning of the scheduled quit attempt.

Only complete EMAs with corresponding timestamps were included in
this analysis, resulting in 9,634 total observations with the median number
of assessments per individual 151 (IQR 101.5-162). All continuous covariates
were standardized to mean zero and variance one before analysis to help
reduce multicollinearity and place covariates on the same scale for interpre-
tation. The spline functions were initially generated with 20 basis functions,
but only the eigenvalues/eigenvectors that captured 99.9% of the variability
were included in the model to reduce the parameter space and computa-
tion time, similar to (Scheipl, Fahrmeir and Kneib, 2012). This reduced the
column space of the penalized covariates U∗ to 8 in our application. We
applied our model with the traditional spike-and-slab prior, as well as the
spiked DP. When fitting each model, we chose a non-informative prior for
the fixed and random effects’ inclusion indicators, aνt = bνt = aλd = bλd = 1.
This assumption reflects the exploratory nature of our study aimed at learn-
ing potential relations between risk factors and smoking behaviors with little
or no information regarding their occurrence in the presence of other risk
factors. We assumed a mildly informative prior on the fixed regression co-
efficients by setting τ2 = 2. This places a 95% prior probability of included
regression coefficients between an odds ratio of 0.06 and 16. Additionally, we
set v0 = v∗ = 10, m0 = m∗ = 0, and Γ ∼ N(γ0 = 0,V γ = I). Lastly, when
using the SDP prior, the hyperparameters for the concentration parameters
ϑ and A were set to aϑ = bϑ = aA = bA = 1. For posterior inference, we
ran our MCMC algorithm with and without SDP priors for both fixed and
random effects for 10,000 iterations, treating the first 5,000 as burn-in and
thinning to every 10th iteration. Trace plots of the parameters’ posterior
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samples indicated good convergence and mixing. Additionally, we observed
a relatively high correlation (∼ 97%) between the posterior probabilities of
inclusion obtained from two chains initiated with different parameter values,
and potential scale reduction factors, R̂, for each of the selected β andK be-
low 1.1 (Gelman and Rubin, 1992), further demonstrating that the MCMC
procedure was working properly and the chains converged. To assess model
fit, a residual plot and a series of posterior predictive checks were performed
in which we compared replicated data sets from the posterior predictive dis-
tribution of the model to the observed data (Gelman et al., 2000). Overall,
we found strong evidence of good model fit. See the Supplementary Mate-
rials for details. Inclusion in the model was determined using the median
model approach (Barbieri et al., 2004) (i.e., marginal posterior probability
of inclusion (MPPI) ≥ 0.50). For the SDP model, clusters of regression
coefficients were determined using sequentially-allocated latent structure
optimization to minimize the lower bound of the variation of information
loss (Wade et al., 2018; Dahl and Muller, 2017). To compare the predictive
performance of both models, we performed a leave-one-out cross-validation
approximation procedure, following the approach proposed by Vehtari, Gel-
man and Gabry (2017). This approach approximates leave-one-out (LOO)
cross-validation with the expected log pointwise predictive density (epld).
By using Pareto smoothed importance sampling (PSIS) for estimation, it
provides a more stable estimate compared to the method of Gelfand (1996).
We used the R package loo (Vehtari, Gelman and Gabry, 2016), which re-
quires the pointwise log-likelihood for each subject i = 1, . . . , N at each
observation j = 1, . . . , ni calculated at each MCMC iteration s = 1, . . . , S,
and produces an estimated êpld value, with larger values implying a superior
model.

3.2. Results. Overall, we found better predictive performance for the
model with SDP priors versus the traditional spike-and-slab priors, êpldSDP =

−2985.1 and êpldSS = −3062.7, respectively. Plots of the marginal poste-
rior probabilities of inclusion for the fixed and random effects selected using
our proposed approach with SDP priors are found in Figure 1. Figure 2
presents the time-varying effects selected using the same model. Compared
to usual care, we found a higher odds of momentary smoking by the next
assessment for those assigned to the NCI QuitGuide group prior to the quit
attempt. However immediately after the quit attempt, we observed a lower
odds of momentary smoking by the next assessment for those assigned to
the NCI QuitGuide group, which gradually increased to the initial level over
the remainder of the study (top left panel). Similarly, we observed a positive
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relation between having the urge to smoke and momentary smoking by the
next assessment prior to the quit attempt that diminished during the three
weeks following the quit attempt, before sharply increasing during the fourth
week post-quit (top right panel). Throughout the assessment period, we ob-
served a positive relation between negative affect and momentary smoking
by the next assessment that increased during the first week post-quit, level-
ing off at an odds ratio of 1.75 until the third week after the quit attempt.
We additionally found a positive relation between cigarette availability and
the odds of momentary smoking by the next assessment that strengthened
over the assessment window. For a 1 SD increase in cigarette availability, the
odds of momentary smoking by the next assessment increased by 300% for
the typical subject one week after the quit attempt, holding all else constant.
In the two lower panels of Figure 2 we observe a relatively weak, oscillating
effect of being bored and interacting with a smoker on momentary smoking
by the next assessment, respectively. In addition to these effects, the model
identified a constant effect for alcohol consumption in the last hour and mo-
tivation to quit smoking over the assessment period. A similar set of fixed
effect relations were identified by our model without the SDP prior, with
the exception of not selecting being bored.

Compared to standard TVEMs, our approach deconstructs the structure
of the relations between risk factors and smoking behaviors over time, aid-
ing the interpretation of the underlying trends. This information may help
the development and evaluation of tailored intervention strategies targeting
smoking cessation using mHealth data. For example, negative effect has an
obvious positive association with momentary smoking by the next assess-
ment that wavers around an odds ratio of 1.2 to 1.5 for a majority of the
study. However based on Figure 2, it is unclear whether or not the effect
linearly diminishes over time. By performing selection on the main effect,
linear interaction, and non-linear interaction terms separately, we are able
to obtain an actual point estimate for the constant effect of negative affect
(OR 1.40) as opposed to subjectively assuming a range of values from the
plot. Additionally, since the linear interaction term was not selected, we can
claim that the effect was not linearly decreasing over time and that it was
simply wavering around the constant effect throughout the study.

Tables 1 and 2 present the estimated variances and corresponding 95%
credible intervals (CI) for the random effects selected using SDP priors and
traditional spike-and-slab priors, respectively. Using SDP priors, our method
identified a random main effect for urge to smoke, cigarette availability, being
bored, and motivation to quit smoking as well as a random linear interaction
between being assigned to the SmartT treatment group, interacting with
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Fig 1. Smoking Cessation Study: Marginal posterior probabilities of inclusion (MPPI) for
fixed (top) and random (bottom) effects. Selected fixed effects in ascending order: NCI (NL-
INTX), urge to quit (NL-INTX), cigarette availability (all), interacting with a smoker (NL-
INTX), negative affect (NL-INTX, main), being bored (NL-INTX), alcohol consumption
(main), motivation to quit (main), HSI (NL-INTX). Selected random effects in ascending
order: urge (main), cigarette availability (main), being bored (main), motivation to quit
(main), SmartT (L-INTX), interacting with a smoker (L-INTX), being bored (L-INTX).
Dotted lines represent the inclusion threshold of 0.50. NL-INTX: non-linear interaction,
L-INTX: linear interaction
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Fig 2. Smoking Cessation Study: Time-varying effects on momentary smoking by the next
assessment of those covariates selected by our model with SDP priors. Shaded regions
represent pointwise 95% CI. Dashed lines indicate an odds ratio of one.
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Random Effect σ̂2 95% CI

Intercept 0.923 (0.539, 1.528)
Urge 0.152 (0.031, 0.278)

Cigarette Availability 0.865 (0.394, 1.467)
Bored 0.183 (0.076, 0.398)

Motivation to Quit Smoking 0.156 (0.045, 0.311)
SmartT × Time 0.077 (0.010, 0.210)

Interacting with a Smoker × Time 0.016 (0.002, 0.050)
Bored × Time 0.002 (0.000, 0.005)

Table 1
Smoking Cessation Study: Estimated variances with corresponding 95% credible intervals

(CI) for selected random effects with SDP priors based on MPPI ≥ 0.50.

smokers, and being bored with time. Thus even though we did not discover an
overall difference in the odds of momentary smoking by the next assessment
for those assigned to the SmartT treatment versus usual care, we observed
evidence that the subjects responded differently to the SmartT treatment
across the assessment window. With the traditional spike-and-slab priors,
we found similar results overall. However, the model only selected a random
main effect for interacting with smokers and additionally suggested a random
effect for anxiousness.

By using SDP priors, our approach is capable of clustering covariates that
share similar linear trends with momentary smoking by the next assessment
over time. In practice, this information can be used to help construct decision
rules when designing future intervention strategies. In our analysis, only five
main effect and linear interaction terms were selected, and each of them
were allocated to their own cluster. With this knowledge, researchers can
prioritize targeting risk factors based on their relative strength of association
at a given moment. Had some of these risk factors’ effects been clustered
together, researchers may rely more heavily on other pieces of information,
such as the cost or success rates for a particular intervention strategy, when
assessing which risk factors to target during a high-risk moment.

Similar to previous studies investigating the temporal relation between
risk factors and smoking behaviors around a quit attempt, our results show
a convex relation between urge to smoke and momentary smoking after the
quit attempt, a positive association with cigarette availability throughout
the quit attempt, and a positive, increasing relation between negative af-
fect and momentary smoking during the first week after the quit attempt
(Koslovsky et al., 2017; Vasilenko et al., 2014). Existing TVEMs approaches,
however, typically model the repeated measures structure of the data by sim-
ply including a random intercept term in the model, neglecting to investigate
random main effects or interaction terms. They also do not incorporate vari-
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Random Effect σ̂2 95% CI

Intercept 1.317 (0.676, 2.487)
Urge 0.099 (0.011, 0.248)

Cigarette Availability 0.905 (0.503, 1.607)
Interacting with a Smoker 0.848 (0.286, 1.924)

Bored 0.244 (0.065, 0.517)
Anxiousness 0.140 (0.001, 0.361)

Motivation to Quit Smoking 0.212 (0.076, 0.448)
SmartT × Time 0.062 (0.016, 0.155)
Bored × Time 0.002 (0.000, 0.004)

Table 2
Smoking Cessation Study: Estimated variances with corresponding 95% credible intervals

(CI) for selected random effects with traditional spike-and-slab priors based on MPPI
≥ 0.50.

able selection. Our approach, on the other hand, delivers insights on how
relations vary over time as well as how they vary across individuals.

3.3. Sensitivity Analysis. To investigate our model’s sensitivity to prior
specification, we set each of the hyperparameters to default values and then
evaluated the effect of manipulating each term on the results obtained in
section 3. For the default parameterization, we set the hyperparameters for
the prior inclusion indicators ν and λ to aνt = bνt = aλd = bλd = 1. For
interpretation, aνt = bνt = 1 implies that the prior probability of inclusion
for a fixed effect is aνt/(aνt + bνt) = 0.50. The default values for the variance
of the normal distribution for the slab of β0 and β◦ as well as the base
distribution for β∗ were each fixed at 5. Additionally, the mean and variance
for the random effect terms’ proposal and prior distributions were set to 0
and 5, respectively. The hyperparameters for the concentration parameters ϑ
and A were set to aϑ = bϑ = aA = bA = 1. Lastly, we assumed Γ ∼ N(γ0 =
0,V γ = I). We ran our MCMC algorithm for 10,000 iterations, treating
the first 5,000 iterations as burn-in and thinning to every 10th iteration
for the SDP model, similar to our case study. For each of the fixed and
random effects, inclusion in the model was determined using the median
model approach (Barbieri et al., 2004).

Since the true model is never known in practice, we evaluated each model
parameterization in terms of sparsity levels and overlap with the results re-
ported in the case study section. Specifically, we present the total number
terms selected for both fixed and random effects (# Fixed and # Random).
We also provide the proportion of active risk factors in our case study that
were also included by each model and the proportion of inactive risk fac-
tors that were also excluded by each model, for fixed (f-IN and f-EX) and
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random effects (r-IN and r-EX) as well as overall (IN and EX). Results of
the sensitivity analysis are reported in Table 3. Compared to the results
presented in the case study, we found relatively consistent overlap in the
risk factors included and excluded by each model overall. We observed mod-
erate sensitivity to hyperparameter values in terms of percent overlap for
fixed and random effects of risk factors included in the model, an artifact
of the relatively weak associations identified for some of the risk factors.
Notably, risk factors showing stronger associations with momentary smok-
ing at the next assessment (e.g., negative affect, cigarette availability, and
motivation to quit smoking) were selected by the model regardless of prior
specification. Likewise, weaker relations between momentary smoking at the
next assessment and risk factors, such as being bored and interacting with a
smoker, were more sensitive to hyperparameters. We also observed that the
number of selected fixed and random effects increased (decreased) as the
prior probability of inclusion increased (decreased), as expected. In prac-
tice, there are a variety of factors researchers should consider when setting
the prior probability of inclusion, including the aim of the research study,
the desired sparsity of the model, prior knowledge of covariates inclusion,
as well as results from simulation and sensitivity analyses to name a few.
From a clinical perspective, τ2 = 10 reflects a relatively diffuse prior for a
given risk factor (i.e., odds ratio between 0.002 and roughly 500). To fur-
ther investigate the model’s sensitivity to regression coefficients’ variances,
we set τ2 = v0 = 1000, and found somewhat similar results to the model
with τ2 = v0 = 10 overall (i.e., IN = 0.8, EX = 0.8). Here, we unexpectedly
found non-montonic behavior in the proportion of included and excluded
terms as a function of the coefficients’ variance, which might also reflect
our model’s sensitivity to relatively weak associations as previously noted.
In theory, the selection of random effects may be sensitive to the order in
which the columns of Z are ordered, since the Cholesky decomposition is
itself, order dependent (Müller et al., 2013). In our case study, we did not
observe any differences regarding which random effects were selected with a
random permutation of the Z columns. In section 5, we further demonstrate
our model’s robustness to the ordering of Z on simulated data.

4. Simulation Study. In this section, we evaluate our model in terms
of variable selection and clustering performance on simulated data similar
in structure to our case study data. We compared our method with and
without SDP priors on varying-coefficient and random effects to two other
Bayesian methods which are designed to handle this class of models. The
first is the method of Scheipl, Fahrmeir and Kneib (2012), which has pre-
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avt = aλd = 1, bvt = bλd = 9 τ2 = v0 = 2 aϑ = bϑ = aA = bA = 0.1
# Fixed 4 8 6

# Random 5 5 7
IN 0.60 0.70 0.80

f-IN 0.44 0.67 0.56
r-IN 0.50 0.50 0.83
EX 0.80 0.60 1.00

f-EX 1.00 1.00 1.00
r-EX 0.78 0.78 0.89

avt = aλd = 9, bvt = bλd = 1 τ2 = v0 = 10 aϑ = bϑ = aA = bA = 10
# Fixed 10 7 6

# Random 8 5 4
IN 1.00 0.60 0.80

f-IN 0.78 0.67 0.56
r-IN 0.83 0.50 0.33
EX 0.60 1.00 1.00

f-EX 0.83 0.80 1.00
r-EX 0.67 0.78 0.78

Table 3
Case Study Data: Sensitivity results for the proposed model with SDP across various

prior specifications. Total number of terms selected for both fixed and random effects are
indicted as # Fixed and # Random, respectively. The proportion of active (inactive) risk

factors presented in the case study that were also included (excluded) by each model is
reported as f-IN and r-IN (f-EX and r-EX), for fixed and random effects, respectively.

Finally, the overall proportion of active (inactive) risk factors presented in the case study
that were also included (excluded) by each model is represented as IN (EX).
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viously shown promising results performing function selection in structural
additive regression models using continuous spike-and-slab priors. Their ap-
proach differs from ours in that they assume parameter-expanded normal-
mixture-of-inverse-gamma (peNMIG) distribution priors for selection, in-
spired by Ishwaran et al. (2005), and design a Metropolis-Hastings with pe-
nalized iteratively weighted least-squares algorithm for updating regression
coefficients within the logistic framework. A popular alternative to spike-
and-slab priors to induce sparsity in high-dimensional regression settings is
to assume global-local shrinkage priors on the regression coefficients (see
Van Erp, Oberski and Mulder (2019); Bhadra et al. (2019) for detailed re-
views). At the request of a reviewer, we additionally compared our proposed
model to a reparameterized version with shrinkage priors (Carvalho, Pol-
son and Scott, 2009). To achieve this, we replaced the spike-and-slab priors
on β with horseshoe priors, which belong to the class of global-local scale
mixtures of normal priors (Polson and Scott, 2010). For random effects, K,
we assumed a similar global-local structure for the scale parameters of the
folded-normal distribution, v0. To our knowledge, the theoretical properties
and selection performance of global-local scale mixtures of non-normal pri-
ors have yet to be explored. However we conjectured that the global-local
framework should effectively shrink inactive random effects towards zero and
allow active terms to be freely estimated. Details of the resulting model and
accompanying MCMC algorithm are found in the Supplementary Material.

We simulated N = 100 subjects with 20-40 observations randomly spaced
across an assessment window with tij ∈ [0, 1], without loss of generality. For
each observation, we generated a set of 15 covariates, xi, comprised of an
intercept term and 14 continuous covariates simulated from a N14(0,Σ),
where Σst = w|s−t| and w = 0.3. To simulate time-varying covariate tra-
jectories, we randomly jittered half of the elements within xi by N(0, 1).
Additionally, we set zij = xij . Thus, each full model contained 15 main
effects, linear interactions, non-linear interactions, and random main effects,
corresponding to 60 potential terms (or groups of terms for the non-linear
interaction components) to select. The first 5 functional terms in the true
model were defined as

• f1(tij) = π sin(3πtij) + 1.4tij − 1.6
• f2(tij) = π cos(2πtij) + 1.6
• f3(tij) = −πt sin(5πtij) + 1.7tij − 1.5
• f4(tij) = −1.5tij + 1.6
• f5(tij) = −1.6,

and the random effects ai ∼ N(0,Σα) with σkk = 0.75 and σjk = 0.4 for
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j, k = 1, . . . , 5. Thus in the true model, ψij =
∑5

p=1 fp(tij)xijp + z′ijai.
Note that to impose an inherent clustering for the main effects and linear
interaction terms, their values were specified to center around ±1.5.

We ran each of the MCMC algorithms on 50 replicated data sets, using
7,500 iterations, treating the first 3,750 iterations as burn-in and thinning
to every 10th iteration for each model. The spline functions were generated
similar to our application. We set the hyperparameters for the inclusion
indicators, aνt = bνt = aνt = bνt = 1, imposing a non-informative prior
for selection of fixed and random effect terms. Additionally, we fixed the
regression coefficient hyperparameters to τ2 = 2 and m0 = 0 with v0 = 10.
For the concentration parameters ϑ and A, we assumed aϑ = bϑ = aA =
bA = 1. Before analysis, the covariates were standardized to mean 0 and
variance 1.

For each of the models with spike-and-slab priors, inclusion in the model
for both fixed and random effects was determined using the median model
approach (Barbieri et al., 2004). For the horseshoe model, fixed effects were
considered active if their corresponding 95% credible interval did not con-
tain zero, similar to Bhadra et al. (2019). The 95% credible interval for
random effects will almost surely not contain zero. As a naive alternative,
we assumed a random effect was active in the model if its posterior mean
exceeded a given threshold. For the sake of demonstration, we evaluated
the performance of the model over a grid of potential threshold values, and
presented the results for the best performing model overall. Notably, this
solution is only feasible when the true answer is known, which is never the
case in practice. Variable selection performance was evaluated via sensitivity
(SENS), specificity (SPEC), and Matthew’s correlation coefficient (MCC)
for fixed and random effects separately. These metrics are defined as

SENS =
TP

FN + TP

SPEC =
TN

FP + TN

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TN , TP , FN , and FP represent the true negatives, true positives,
false negatives, and false positives, respectively. For the SDP models, clus-
ters of regression coefficients were determined using sequentially-allocated
latent structure optimization to minimize the lower bound of the variation
of information loss (Wade et al., 2018; Dahl and Muller, 2017). Once clusters
were determined, clustering performance was evaluated using the variation
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of information, a measure of distance between two clusterings ranging from
0 to logR, where R is the number of items to cluster and lower values imply
better clustering (Meilă, 2003).

Figure 3 presents the estimated smooth functions obtained using our pro-
posed method with SDP priors on a randomly selected replicated data set
from the simulation study. Here, f1(tij) represents the global intercept com-
prised of a main effect, linear interaction, and non-linear interaction term
that were forced into the model. Of interest is the ability of the model to
properly select the influential components in f2(tij) and f3(tij) and addition-
ally capture their structure. Using the method proposed in Dahl and Muller
(2017) to identify latent clusters of fixed main effect and linear interaction
terms, our method successfully clustered the linear interaction in f1(tij) and
the main effects in f2(tij) and f4(tij), while incorrectly assigning the linear
interaction term in f3(tij) to its own cluster. Additionally, the main effects in
f1(tij), f3(tij), and f5(tij) were appropriately clustered together, while the
linear interaction term in f4(tij) was incorrectly assigning to its own cluster.
The remaining, uninfluential terms were all allocated to the trivial group.
Despite f1(tij) and f3(tij) having similar main effect and linear interaction
terms, they are dramatically different in terms of their non-linear interaction
terms. However by clustering their underlying linear trajectories, our model
with SDP priors was able to uncover similarities in their relations with the
outcome over time that traditional approaches would fail to discover.

Table 4 reports results for our proposed method with SDP priors (PGB-
VSDP), our proposed method without SDP priors (PGBVS), peNMIG, and
our model with horseshoe priors (PGHS) in terms of average sensitivity,
specificity, and MCC for fixed (fSENS, fSPEC, fMCC) and random (rSENS,
rSPEC, rMCC) effects across the replicate data sets with standard errors
in parentheses. Additionally for the PGBVSDP model, we provide cluster-
ing performance results for fixed (fCLUST) and random effects (rCLUST).
Since each of the random effects were simulated similarly, clusterings were
compared to a single cluster for the non-zero terms. Overall, the methods
had relatively similar results for fixed effects, with PGBVS and PGHS per-
forming the best in terms of sensitivity (1.00 and 1.00) and MCC (0.96 and
0.99), respectively. Our method with SDP priors, PGBVSDP, obtained the
highest specificity for fixed effects overall. Given that the maximum possible
values fCLUST and rCLUST could take on were 3.4 and 2.7, respectively, we
found fairly strong clustering performance for both fixed (0.39) and random
(0.92) effects with PGBVSDP. We observed more variability in the selec-
tion of random effects across models. Random effect selection sensitivity
was significantly lower compared to the fixed effects for all of the models.
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Fig 3. Simulated Data: Estimated smooth function f1(tij), f2(tij), f3(tij) for a randomly
selected replicate data set generated in the simulation study. The estimated smooth function
is represented by a solid black line with pointwise 95% credible regions in grey. Dashed lines
represent the true log odds ratios as a function of time.
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PGBVSDP PGBVS peNMIG PGHS
fSENS 0.96 (0.09) 1.00 (0.02) 0.93 (0.11) 1.00 (0.00)
fSPEC 0.99 (0.02) 0.98 (0.02) 0.94 (0.04) 0.96 (0.01)
fMCC 0.94 (0.08) 0.96 (0.05) 0.83 (0.10) 0.99 (0.02)

fCLUST 0.39 (0.21) - - -
rSENS 0.76 (0.21) 0.62 (0.25) 0.46 (0.23) 0.86 (0.24)
rSPEC 0.88 (0.10) 0.96 (0.05) 0.64 (0.16) 0.90 (0.11)
rMCC 0.63 (0.26) 0.64 (0.23) 0.11 (0.33) 0.76 (0.21)

rCLUST 0.92 (0.50) - - -
Time (s) 4658 (271) 2235 (46) 10720 (1116) 3076 (74)

Table 4
Simulated Data: Results for the proposed model with and without the SDP on regression
coefficients compared to peNMIG (Scheipl, Fahrmeir and Kneib, 2012) and our model

with horseshoe priors (Carvalho, Polson and Scott, 2009). Results are averaged over 50
replicate data sets with standard deviations in parentheses.

In terms of specificity (1-false positive rate) for random effects, our meth-
ods, regardless of prior formulation, dramatically outperformed peNMIG,
with PGBVS obtaining the highest specificity overall (0.96). However, PG-
BVSDP and PGBVS had lower sensitivity with respect to random effects
compared to PGHS. While PGHS performed well separating active from
inactive random effects, recall that the truth was used to select the opti-
mal selection threshold. The improved performance of PGBVS, PGBVSDP,
and PGHS in terms of variable selection was achieved in considerably less
computation time compared to peNMIG. Our core method was able to run
7,500 iterations in a fifth of the time compared to peNMIG, accessed via
Scheipl (2011). Using the SDP priors, which requires additional updates for
clustering the regression coefficients, we observed a two-fold increase in com-
putation time for PGBVSDP compared to PGBVS. However on average, the
PGBVSDP approach still achieved about a 50% reduction in computation
time compared to peNMIG. It is important to note that for comparison, all
algorithms were run in series, even though the R package spikeSlabGAM
(Scheipl, 2011) provides functionality to run multiple chains in parallel.

5. Sensitivity Analysis. To assess the model’s sensitivity to hyperpa-
rameter settings, we set each of the hyperparameters to default values and
then evaluated the effect of manipulating each term on selection and cluster-
ing performance. For the default parameterization, we set the hyperparam-
eters for the prior inclusion indicators ν and λ to aνt = bνt = aλd = bλd = 1.
The default values for the variance of the normal distribution for the slab
of β0 and β◦ as well as the base distribution for β∗ were each fixed at 5.
Additionally, the mean and variance for the random effect terms’ proposal
and prior distributions were set to 0 and 5, respectively. The hyperparam-
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eters for the concentration parameters, ϑ and A aϑ = bϑ = aA = bA = 1.
Lastly, we assumed Γ ∼ N(γ0 = 0,V γ = I). We ran our MCMC algorithm
on the 50 replicated data sets generated in the simulation study, using 7,500
iterations, treating the first 3,750 iterations as burn-in and thinning to every
10th iteration for the SDP model.

Results of the sensitivity analysis are reported in Table 5. As expected,
we found that the sensitivity (specificity) increased (decreased) as the prior
probability of inclusion for the fixed and random effects increased. The model
did not seem sensitive to the variance assumed for the normal and folded
normal priors assigned to the fixed and random effect slab distributions,
respectively. Similarly, we found comparable results in terms of sensitivity
and specificity for different values of the concentration parameters’ hyper-
parameters. In terms of clustering, we saw marginally better variation of
information measures with larger concentration parameter hyperparame-
ters. However across simulations runs, we observed relatively high standard
errors in terms of the variation of information measures. To assess potential
sensitivity to the order of random effects in our simulations, we re-ran the
simulation study with a random permutation of the columns of Z. Similar to
the case study, we found no evidence of sensitivity to random effect ordering
with our model as the results were almost identical to those presented in
Table 4 with PGBVSDP (rSENS = 0.76 (0.20), rSPEC = 0.87 (0.09), rMCC
= 0.62 (0.20), rCLUST = 0.94 (0.42)).

6. Conclusions. In this paper, we have investigated intensive longitu-
dinal data, collected in a novel, smartphone-based smoking cessation study
to better understand the relation between potential risk factors and smok-
ing behaviors in the critical moments surrounding a quit attempt, using
a semiparametric Bayesian time-varying effect modeling framework. Unlike
standard TVEMs, our approach deconstructs the structure of the relations
between risk factors and smoking behaviors over time, which aids in for-
mulating hypotheses regarding dynamic relations between risk factors and
smoking in the critical moments around a quit attempt. By performing vari-
able selection on random effects, the approach delivers additional insights
on how relations vary over time as well as how they vary across individuals.
Furthermore, the use of non- and semiparametric prior constructions allows
simultaneous variable selection for fixed and random effects while learning
latent clusters of regression coefficients. As such, our model is designed to
discover various forms of latent structures within the data without requir-
ing strict model assumptions or burdensome tuning procedures. Results from
our analysis have confirmed previously identified temporal relations between
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avt = aλd = 1, bvt = bλd = 9 τ2 = v0 = 2 aϑ = bϑ = aA = bA = 0.1
fSENS 0.92 (0.13) 0.97 (0.08) 0.94 (0.12)
fSPEC 0.99 (0.02) 0.99 (0.02) 0.99 (0.02)
fMCC 0.93 (0.10) 0.96 (0.07) 0.94 (0.09)

fCLUST 0.45 (0.30) 0.35 (0.20) 0.45 (0.25)
rSENS 0.50 (0.20) 0.79 (0.20) 0.54 (0.28)
rSPEC 0.87 (0.09) 0.88 (0.08) 0.85 (0.10)
rMCC 0.40 (0.26) 0.66 (0.23) 0.41 (0.29)

rCLUST 1.30 (0.36) 0.91 (0.44) 1.25 (0.50)
avt = aλd = 9, bvt = bλd = 1 τ2 = v0 = 10 aϑ = bϑ = aA = bA = 10

fSENS 0.99 (0.03) 0.96 (0.07) 0.94 (0.11)
fSPEC 0.96 (0.03) 0.99 (0.02) 0.99 (0.02)
fMCC 0.91 (0.06) 0.95 (0.07) 0.93 (0.11)

fCLUST 0.40 (0.20) 0.39 (0.23) 0.41 (0.24)
rSENS 0.85 (0.20) 0.78 (0.20) 0.74 (0.23)
rSPEC 0.84 (0.10) 0.89 (0.10) 0.86 (0.10)
rMCC 0.66 (0.19) 0.67 (0.25) 0.60 (0.27)

rCLUST 0.84 (0.49) 0.89 (0.47) 0.97 (0.49)

Table 5
Simulated Data: Sensitivity results for the proposed model with SDP on regression

coefficients. Results are averaged over 50 replicated data sets with standard errors in
parentheses.

smoking behaviors and urge to smoke, cigarette availability, and negative af-
fect. They have also identified subject-specific heterogeneity in the effects of
urge to smoke, cigarette availability, and motivation to quit. Additionally,
we have found that subjects differed in how they responded to the SmartT
treatment (compared to usual care), interacting with a smoker, and being
bored over time. This has practical relevance as researchers can use this infor-
mation to design adaptive interventions that prioritize targeting risk factors
based on their relative strength of association at a given moment. They also
reinforce the importance of designing dynamic intervention strategies that
are adaptive to subjects’ current risk profiles.

Throughout this work, we have demonstrated how our method is well-
suited to aide the development and evaluation of future JITAI strategies
targeting smoking cessation using mHealth data. The existing SmartT al-
gorithm delivers treatment based on the presence of six lapse triggers, which
are weighted based on their relative importance in predicting risk of lapse
(Businelle et al., 2016). The results of this study allow for a more dynamic
algorithm that takes into account not only the time-varying relationships
between psychosocial and environmental variables and smoking lapse, but
the different ways in which individuals experience a quit attempt. For exam-
ple, the results suggest that providing momentary support to cope with urge
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to smoke and negative affect may be more useful if delivered in the early
stages of a quit attempt, but become less important by week 4 post-quit.
However, messages that address cigarette availability, alcohol consumption,
and motivation to quit smoking may be a more important focus for the entire
quit attempt. Although the findings for this small sample may not be gen-
eralizable to larger, more diverse populations, these methods are the next
step in developing a personalized smoking risk algorithm that can inform
highly specific, individualized treatment to each smoker.

It is important to note that selection of a risk factor by our proposed
method (or any variable selection technique), does not imply clinical signifi-
cance. Notably, the point-wise credible intervals often contained odds ratios
of one and most risk factors were only influential for brief moments through-
out the study period. While these results highlight the importance of un-
derstanding risk factors’ dynamic relations with smoking to design tailored
intervention strategies, we recommend using our method for hypothesis gen-
eration in practice and conducting confirmatory studies before generalizing
results.

Compliance rates for EMA studies typically range between 70% and 90%,
with a recommended threshold of 80% (Jones, Xu and Grunwald, 2006).
In our case study, the compliance rate was 84%. Additionally, 97.3% of
all assessments were completed once initiated, and subjects were unable to
skip questions within an assessment. Since subjects were assessed multiple
times per day, nonresponse was attributed more to situational context (e.g.,
driving) than smoking status. Thus for this study, we found the missing
completely at random assumption for missing observations justified. How-
ever, future studies may consider the development of advanced analytical
methods for EMA data sets that can handle different types of missingness
assumptions and other potential biases, such as social desirability bias.

In this analysis, we focus on time-varying effects due to their recent pop-
ularity in smoking behavior research Tan et al. (2012); Shiyko et al. (2012);
Vasilenko et al. (2014); Koslovsky et al. (2017); Lanza et al. (2013); Shiyko
et al. (2014). A promising alternative for investigating the complexity of
smoking behaviors around a quit attempt is the varying index coefficient
model, which allows a covariate’s effect to vary as a function of multiple
other variables (Ma and Song, 2015). By incorporating variable selection
priors, researchers could identify which variables are responsible for modify-
ing a covariate’s effect. Oftentimes behavioral researchers are interested in
exploring other forms of latent structure, such as clusters of individuals who
respond similarly to treatments or have similar risk profiles over time. Tak-
ing advantage of the flexibility and efficiency of our approach, future work
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could extend our core model to address these research questions by recasting
it into a mixture modeling framework. In addition, while we have developed
our method for binary outcomes due to their prevalence in smoking behavior
research studies, our approach is easily adaptable to other data structures
found within and outside of smoking behavior research, such as time to event
data (Sha, Tadesse and Vannucci, 2006) and continuous outcomes. While our
method borrows information across regression coefficients, we avoided im-
posing structure among covariates via heredity constraints, which restrict
the model space for higher order terms depending on the inclusion status of
the lower order terms that comprise them. Researchers interested in extend-
ing our approach to accommodate these, and other forms of, hierarchical
constraints may adjust the prior probabilities of inclusion (Chipman, 1996).
Lastly, while we were hesitant to present variable selection results for PGHS,
due to the limited understanding of global-local priors for non-Gaussian dis-
tributions, this showed good results in simulations. Furthermore, when ap-
plied to the case study data, we obtained promising predictive performance
(i.e., êpldHS = −2955.5) that warrant future investigation of its theoretical
properties.
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R-package for PGBVS:
R-package PGBVS contains code to perform the methods described in the
article. The package also contains functionality for reproducing the data
used in the sensitivity and simulation studies and for posterior inference.
The R package is located at https://github.com/mkoslovsky/PGBVS.

Supplementary Information:
This file contains a description of the full joint distribution of our model with
a graphical representation, a detailed description of our proposed MCMC al-
gorithm with and without SDP priors, and derivations for the prior marginal
likelihood used to sample latent cluster assignments. Additionally, we include
details of the goodness-of-fit analysis for the case study.
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Berardi, V., Carretero-González, R., Bellettiere, J., Adams, M. A., Hughes, S.
and Hovell, M. (2018). A Markov approach for increasing precision in the assessment

https://github.com/mkoslovsky/PGBVS


TVEM FOR MHEALTH DATA 31

of data-intensive behavioral interventions. Journal of Biomedical Informatics 85 93–
105.

Bhadra, A., Datta, J., Polson, N. G., Willard, B. et al. (2019). Lasso meets horse-
shoe: A survey. Statistical Science 34 405–427.

Bolman, C., Verboon, P., Thewissen, V., Boonen, V., Soons, K. and Jacobs, N.
(2018). Predicting smoking lapses in the first week of quitting: an ecological momentary
assessment study. Journal of Addiction Medicine 12 65.

Brook, D. W., Brook, J. S., Zhang, C., Whiteman, M., Cohen, P. and Finch, S. J.
(2008). Developmental trajectories of cigarette smoking from adolescence to the early
thirties: personality and behavioral risk factors. Nicotine & Tobacco Research 10 1283–
1291.

Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate Bayesian variable
selection and prediction. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 60 627–641.

Businelle, M. S., Ma, P., Kendzor, D. E., Reitzel, L. R., Chen, M., Lam, C. Y.,
Bernstein, I. and Wetter, D. W. (2014). Predicting quit attempts among home-
less smokers seeking cessation treatment: an ecological momentary assessment study.
Nicotine & Tobacco Research 16 1371-1378.

Businelle, M. S., Ma, P., Kendzor, D. E., Frank, S. G., Vidrine, D. J. and Wet-
ter, D. W. (2016). An ecological momentary intervention for smoking cessation: eval-
uation of feasibility and effectiveness. Journal of Medical Internet Research 18 e321.

Cai, B. and Bandyopadhyay, D. (2017). Bayesian semiparametric variable selection with
applications to periodontal data. Statistics in Medicine 36 2251–2264.

Canale, A., Lijoi, A., Nipoti, B. and Prünster, I. (2017). On the Pitman–Yor process
with spike and slab base measure. Biometrika 104 681–697.

Carvalho, C. M., Polson, N. G. and Scott, J. G. (2009). Handling sparsity via the
horseshoe. In Artificial Intelligence and Statistics 73–80.

Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models.
Biometrics 59 762–769.

Cheng, J., Edwards, L. J., Maldonado-Molina, M. M., Komro, K. A. and
Muller, K. E. (2010). Real longitudinal data analysis for real people: building a good
enough mixed model. Statistics in Medicine 29 504–520.

Chipman, H. (1996). Bayesian variable selection with related predictors. The Canadian
Journal of Statistics 17-36.

Cursio, J. F., Mermelstein, R. J. and Hedeker, D. (2019). Latent trait shared-
parameter mixed models for missing ecological momentary assessment data. Statistics
in Medicine 38 660–673.

Dahl, D. B. and Muller, P. (2017). sdols: Summarizing Distributions of Latent Struc-
tures. R package version 1.4. 591.

de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L., Allen, N. and
Hamaker, E. (2017). On the use of mixed Markov models for intensive longitudinal
data. Multivariate Behavioral Research 52 747–767.

Dunson, D. B., Herring, A. H. and Engel, S. M. (2008). Bayesian selection and
clustering of polymorphisms in functionally related genes. Journal of the American
Statistical Association 103 534–546.

Dziak, J. J., Li, R., Tan, X., Shiffman, S. and Shiyko, M. P. (2015). Modeling in-
tensive longitudinal data with mixtures of nonparametric trajectories and time-varying
effects. Psychological Methods 20 444.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using
mixtures. Journal of the American Statistical Association 90 577–588.



32 M. KOSLOVSKY ET AL.

Fitzmaurice, G. M., Laird, N. M. and Ware, J. H. (2012). Applied Longitudinal
Analysis 998. John Wiley & Sons.

Geiser, C., Bishop, J., Lockhart, G., Shiffman, S. and Grenard, J. L. (2013). Ana-
lyzing latent state-trait and multiple-indicator latent growth curve models as multilevel
structural equation models. Frontiers in Psychology 4 975.

Gelfand, A. E. (1996). Model determination using sampling-based methods. Markov
chain Monte Carlo in practice 145–161.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical science 7 457–472.

Gelman, A., Goegebeur, Y., Tuerlinckx, F. and Van Mechelen, I. (2000). Diag-
nostic checks for discrete data regression models using posterior predictive simulations.
Journal of the Royal Statistical Society: Series C (Applied Statistics) 49 247–268.

George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling.
Journal of the American Statistical Association 88 881–889.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.
Statistica Sinica 339–373.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal
Statistical Society: Series B (Methodological) 55 757–779.

Heron, K. E. and Smyth, J. M. (2010). Ecological momentary interventions: Incorpo-
rating mobile technology into psychosocial and health behaviour treatments. British
Journal of Health Psychology 15 1–39.

Hui, F. K., Müller, S. and Welsh, A. (2017). Hierarchical selection of fixed and random
effects in generalized linear mixed models. Statistica Sinica 501–518.

Ishwaran, H., Rao, J. S. et al. (2005). Spike and slab variable selection: frequentist and
Bayesian strategies. The Annals of Statistics 33 730–773.

Jones, R. H., Xu, S. and Grunwald, G. K. (2006). Continuous time Markov models
for binary longitudinal data. Biometrical Journal 48 411–419.

Kim, S., Dahl, D. B. and Vannucci, M. (2009). Spiked Dirichlet process prior for
Bayesian multiple hypothesis testing in random effects models. Bayesian Analysis (On-
line) 4 707.

Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear
and logistic models. Biometrics 63 690–698.

Klasnja, P., Hekler, E. B., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A.
and Murphy, S. A. (2015). Microrandomized trials: An experimental design for devel-
oping just-in-time adaptive interventions. Health Psychology 34 1220.
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models using Pólya–Gamma latent variables. Journal of the American Statistical As-
sociation 108 1339–1349.

Riley, W. T., Rivera, D. E., Atienza, A. A., Nilsen, W., Allison, S. M. and Mer-
melstein, R. (2011). Health behavior models in the age of mobile interventions: Are
our theories up to the task? Translational Behavioral Medicine 1 53–71.

Rivera, D. E., Pew, M. D. and Collins, L. M. (2007). Using engineering control
principles to inform the design of adaptive interventions: A conceptual introduction.
Drug and Alcohol Dependence 88 S31–S40.

Savitsky, T. and Vannucci, M. (2010). Spiked Dirichlet process priors for Gaussian
process models. Journal of Probability and Statistics 2010.

Savitsky, T., Vannucci, M. and Sha, N. (2011). Variable selection for nonparametric
Gaussian process priors: Models and computational strategies. Statistical Science: A
review Journal of the Institute of Mathematical Statistics 26 130-149.

Scheipl, F. (2011). spikeSlabGAM: Bayesian variable selection, model choice and regu-
larization for generalized additive mixed models in R. arXiv preprint arXiv:1105.5253.

Scheipl, F., Fahrmeir, L. and Kneib, T. (2012). Spike-and-slab priors for function
selection in structured additive regression models. Journal of the American Statistical
Association 107 1518–1532.

Selya, A. S., Updegrove, N., Rose, J. S., Dierker, L., Tan, X., Hedeker, D., Li, R.
and Mermelstein, R. J. (2015). Nicotine-dependence-varying effects of smoking events
on momentary mood changes among adolescents. Addictive Behaviors 41 65–71.

Sha, N., Tadesse, M. G. and Vannucci, M. (2006). Bayesian variable selection for the
analysis of microarray data with censored outcomes. Bioinformatics 22 2262–2268.

Shiffman, S. (2013). Conceptualizing analyses of ecological momentary assessment data.
Nicotine & Tobacco Research 16 S76–S87.

Shiffman, S., Paty, J. A., Gnys, M., Kassel, J. A. and Hickcox, M. (1996). First
lapses to smoking: within-subjects analysis of real-time reports. Journal of Consulting
and Clinical Psychology 64 366.

Shiffman, S., Balabanis, M. H., Paty, J. A., Engberg, J., Gwaltney, C. J.,
Liu, K. S., Gnys, M., Hickcox, M. and Paton, S. M. (2000). Dynamic effects of
self-efficacy on smoking lapse and relapse. Health Psychology 19 315.

Shiffman, S., Gwaltney, C. J., Balabanis, M. H., Liu, K. S., Paty, J. A., Kas-
sel, J. D., Hickcox, M. and Gnys, M. (2002). Immediate antecedents of cigarette
smoking: an analysis from ecological momentary assessment. Journal of Abnormal Psy-
chology 111 531.

Shiyko, M. P., Lanza, S. T., Tan, X., Li, R. and Shiffman, S. (2012). Using the
time-varying effect model (TVEM) to examine dynamic associations between negative
affect and self confidence on smoking urges: Differences between successful quitters and
relapsers. Prevention Science 13 288-299.

Shiyko, M., Naab, P., Shiffman, S. and Li, R. (2014). Modeling Complexity of eMa
Data: time-varying lagged effects of negative affect on smoking Urges for subgroups of
nicotine addiction. Nicotine & Tobacco Research 16 S144–S150.

Tan, X., Shiyko, M. P., Li, R., Li, Y. and Dierker, L. (2012). A time-varying effect
model for intensive longitudinal data. Psychological Methods 17 61.

Timms, K. P., Rivera, D. E., Collins, L. M. and Piper, M. E. (2013). A dynami-
cal systems approach to understanding self-regulation in smoking cessation behavior
change. Nicotine & Tobacco Research 16 S159–S168.



TVEM FOR MHEALTH DATA 35

Trail, J. B., Collins, L. M., Rivera, D. E., Li, R., Piper, M. E. and Baker, T. B.
(2014). Functional data analysis for dynamical system identification of behavioral pro-
cesses. Psychological Methods 19 175.

Van Erp, S., Oberski, D. L. and Mulder, J. (2019). Shrinkage priors for Bayesian
penalized regression. Journal of Mathematical Psychology 89 31–50.

Vasilenko, S. A., Piper, M. E., Lanza, S. T., Liu, X., Yang, J. and Li, R. (2014).
Time-varying processes involved in smoking lapse in a randomized trial of smoking
cessation therapies. Nicotine & Tobacco Research 16 S135–S143.

Vehtari, A., Gelman, A. and Gabry, J. (2016). loo: Efficient leave-one-out cross-
validation and WAIC for Bayesian models. R package version 0.1 6.

Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation
using leave-one-out cross-validation and WAIC. Statistics and Computing 27 1413–
1432.

Wade, S., Ghahramani, Z. et al. (2018). Bayesian cluster analysis: Point estimation and
credible balls (with discussion). Bayesian Analysis 13 559–626.

Walls, T. A. and Schafer, J. L. (2005). Models for intensive longitudinal data. Oxford
University Press.

Yang, M. (2012). Bayesian variable selection for logistic mixed model with nonparametric
random effects. Computational Statistics & Data Analysis 56 2663–2674.

Department of Statistics
Colorado State University
Fort Collins, CO, USA
E-mail: mkoslovsky12@gmail.com

Oklahoma Tobacco Research Center
The University of Oklahoma Health Sciences Center
655 Research Parkway, Suite 400
Oklahoma City, OK 73104
E-mail: Emily-Hebert@ouhsc.edu
E-mail: Michael-Businelle@ouhsc.edu

Department of Statistics
Rice University
Houston, TX, USA
E-mail: marina@rice.edu

mailto:mkoslovsky12@gmail.com
mailto:Emily-Hebert@ouhsc.edu
mailto: Michael-Businelle@ouhsc.edu 
mailto:marina@rice.edu

	Introduction
	Scientific Background
	Model Overview
	 Just-in-Time Adaptive Interventions for Smoking Abstinence

	Methods
	A Varying-Coefficient Model for Intensive Longitudinal Data Collected with EMAs
	Penalized Priors for the Spline Coefficients
	Prior Specification for the Random Effects
	Spiked Nonparametric Priors
	Posterior Inference

	Case Study
	Data Analysis
	Results
	Sensitivity Analysis

	Simulation Study
	Sensitivity Analysis
	Conclusions
	Acknowledgements
	Supplementary Material
	References
	Author's addresses

