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Abstract

Analyzing multivariate count data generated by high-throughput sequencing tech-

nology in microbiome research studies is challenging due to the high-dimensional and

compositional structure of the data and overdispersion. In practice, researchers are of-

ten interested in investigating how the microbiome may mediate the relation between

an assigned treatment and an observed phenotypic response. Existing approaches de-

signed for compositional mediation analysis are unable to simultaneously determine

the presence of direct effects, relative indirect effects, and overall indirect effects, while

quantifying their uncertainty. We propose a formulation of a Bayesian joint model

for compositional data that allows for the identification, estimation, and uncertainty

quantification of various causal estimands in high-dimensional mediation analysis. We

conduct simulation studies and compare our method’s mediation effects selection per-

formance with existing methods. Finally, we apply our method to a benchmark data

set investigating the sub-therapeutic antibiotic treatment effect on body weight in

early-life mice.
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1 Introduction

The human microbiome is the collection of micro-organisms (e.g., bacteria, archaea,

viruses, fungi) that live on and inside of our bodies. A major research question in human mi-

crobiome studies is the feasibility of designing interventions that modify the composition of

the microbiome to promote health and cure disease. Methodological developments designed

to address this research question have taken on various forms and are challenged by the com-

positional structure, high-dimensionality, overdispersion, and zero-inflation characteristic of

microbial count data. Examples of recent developments include sparsity-induced univariate

and multivariate count regression models to identify exposures that characterize the compo-

sition of the microbiome (Chen and Li, 2013; Jiang et al., 2021; Koslovsky, 2023; Koslovsky

and Vannucci, 2020; Liu et al., 2021; Wadsworth et al., 2017; Xu et al., 2015; Zhang and

Yi, 2020; Zhang et al., 2017), compositional regression models to predict biological, genetic,

clinical, or experimental conditions using microbial abundance data (Lin et al., 2014), and

joint models for simultaneous inference of these relations (Koslovsky et al., 2020), among

others.

Several clinical studies have hypothesized that the microbiome may mediate the rela-

tion between an assigned treatment (e.g., diet) and an observed phenotypic response (e.g.,

body mass index). The total effect of the treatment on the outcome is then comprised

of a direct effect (not through the microbiome) and an indirect effect through its relation

with the compositional mediators, both of which may be confounded by other covariates.

Hypothesis testing and regularization techniques have been proposed to test and identify

mediation effects of the microbiome. For example, Zhang et al. (2018) designed a distance-

based approach which incorporates prior structural information of the microbial data, such

as evolutionary relations, and uses a robust, permutation-based approach for simultaneous

inference on multiple distances. This approach estimates an overall mediation effect for the

microbiome but cannot estimate mediation effects for each taxon and does not allow for ad-

ditional covariates in the model. Sohn and Li (2019) assumed a linear log-contrast model to

model the relation between potential mediators and the outcome and applied a debiased reg-

ularization procedure for estimation to produce both overall and component-wise mediation
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effect estimates while allowing for additional covariates. Zhang et al. (2019) took a similar

approach as Sohn and Li (2019) but applied isometric log-ratio transformations, often re-

ferred to as balances (Egozcue et al., 2003), to model the relation between the microbial taxa

and the outcome. Thereafter, inference for relative indirect effects is performed using a joint

significance test with a focus on pre-specified taxa. Here, following these authors, we refer

to the indirect or mediation effects for each taxon as relative indirect effects, to reflect the

relative nature of the information captured in each balance (see section 2.1 for more details).

Zhang et al. (2020) extended the work of Zhang et al. (2019) via a closed testing-based se-

lection procedure to identify individual taxa that mediate the relation between the exposure

and phenotypic outcome. Wang et al. (2020) proposed a two-stage regularized estimation

approach for high-dimensional compositional mediation analysis, which uses a Dirichlet re-

gression model to characterize the relation between treatment and the microbial data while

simultaneously investigating potential interaction terms. Similar to Sohn and Li (2019), this

model identifies relative and overall mediation effects in addition to accommodating other

covariates and interaction terms. Song et al. (2020) and Song et al. (2021) demonstrate the

benefits of a Bayesian approach for exploratory high-dimensional mediation analysis using

various types of shrinkage priors to identify active mediators while simultaneously quantify-

ing model uncertainty. However, these approaches are designed for a high-dimensional set

of continuous mediators which is not suitable for the compositional structure of microbiome

data.

Treatment Outcome

Compositional Mediators
Covariates

Figure 1: Causal directed acyclic graph of the assumed compositional mediation framework
with auxiliary covariates (measured or unmeasured) in both levels of the model.

In this paper we build upon the approach of Koslovsky et al. (2020) and recast their

joint model for compositional microbiome data into the causal framework represented in
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Figure 1, which allows for the identification of mediation effects under the assumption of

a randomized treatment. Compared to two-step approaches, which first model the relation

between microbial abundances and a set of covariates and then regress a phenotypic out-

come on the estimated relative abundances obtained in the first step, Koslovsky et al. (2020)

propose jointly modeling phenotypic outcomes and microbial abundances, which directly ac-

commodates uncertainty in the abundance estimates. Notably, their approach is related to

the broad class of methods that makes distributional assumptions for covariates to reduce

inferential biases (Carroll et al., 2006; Tadesse et al., 2005). In simulation, they show that

this results in improved selection, estimation, and predictive performance. To accommodate

overdispersion, the microbial abundance data are assumed to follow a Dirichlet-multinomial

distribution, given the treatment assignment and a set of observed covariates. A composi-

tional linear regression model relates the relative abundances, which represent the proportion

of each microbe in the microbial sample, to the outcome. We show how the use of discrete

spike-and-slab priors for regression coefficients, which explicitly place a point mass at zero for

excluded terms, provides direct inference on the presence of overall and relative mediation

effects, treatment effects, and potential confounders. By using a fully Bayesian approach

for inference, our method inherently quantifies uncertainty for each term in the model and

functions thereof. As such it provides a more comprehensive approach for compositional

mediation analysis compared to existing approaches. We demonstrate our method’s per-

formance versus comparative approaches on simulated data, provide recommendations for

hyperparameter specifications and estimation of causal estimands, and apply our model to a

benchmark study investigating the meditation effects of the gut microbiome on the relation

between sub-therapeutic antibiotic treatment and body weight in early-life mice (Schulfer

et al., 2019).

In section 2, we first present the Bayesian joint model for compositional mediation anal-

ysis and then describe inference on direct and indirect effects following specification of the

causal assumptions. In section 3, we demonstrate our method’s performance in various sim-

ulated settings and compare the results to existing methods. In section 4, we apply our

model to the benchmark study. We conclude with final remarks in section 5.
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2 Methods

Let yi denote the observed continuous outcome of subject i = 1, . . . , n and ti ∈ {0, 1}

the assigned treatment, with ti = 1 if subject i received the treatment and ti = 0 otherwise.

Furthermore, let zi = (zi1, ..., ziJ)′ indicate a J-dimensional vector of taxa counts and xi =

(xi1, ..., xiP )′ a P -dimensional vector of observed covariates. We first recast the joint model

for compositional microbiome data of Koslovsky et al. (2020) into a framework for mediation

analysis, where the relative abundances are treated as potential mediators, and then describe

inference on direct and indirect effects following specification of the causal assumptions.

2.1 Bayesian Joint Model for Mediation Effect Selection

We adopt a joint model formulation that comprises a linear regression model for the

phenotypic outcome and a Dirichlet-multinomial regression model for the compositional taxa.

The two models are linked via balances, calculated based on estimated relative abundances,

that serve as the shared parameters.

Outcome Model: A multiple linear regression model is used to capture the direct effect

of the treatment on the outcome, while adjusting for potential mediators and other covariates

(including potential confounders of the outcome and mediators), as

yi = c0 + c1ti +
J−1∑
j=1

βjB(ηj,ψi) +
P∑
p=1

κpxip + εi, (1)

where the balances B(ηj,ψi) are a function of the relative abundances ψi = (ψi1, . . . , ψiJ)′,

with
∑J

j=1 ψij = 1, as described below. The relative abundances represent the propor-

tion of the microbiome sample that is made up of each microbe. Regression coefficients

β = (β1, . . . , βJ−1)
′ represent the balances’ effects, c0 the intercept term, and c1 the direct

effect of treatment. Coefficients κ = (κ1, . . . , κP )′ capture the effects of the covariates, xi,

and εi represents the error term. Spike-and-slab priors (Brown et al., 1998; George and

McCulloch, 1997; Tadesse and Vannucci, 2021) are imposed on the coefficients β and κ,

allowing us to investigate whether the balances and/or covariates are associated with the
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outcome, respectively. Specifically,

βj | ξj, σ2 ∼ ξjN(0, hβσ
2) + (1− ξj)δ0(βj), j = 1, . . . , J − 1, (2)

κp | νp, σ2 ∼ νpN(0, hκσ
2) + (1− νp)δ0(κp), p = 1, . . . , P,

where δ0(·) represents a Dirac delta function, or point mass, at zero. Here, the latent

inclusion indicators ξj and νp take on values of 0 or 1, where ξj = 1 (νp = 1) indicates

that the corresponding balance (covariate) is included in the model, and 0 otherwise. We

assume Bernoulli priors on the binary inclusion indicators, with Beta hyperpriors imposed

on the inclusion probabilities. This allows the inclusion probabilities to be marginalized out

for efficient sampling. We indicate this prior construction as ξj ∼ Beta-Bernoulli(aj, bj) and

νp ∼ Beta-Bernoulli(ap, bp), where aj (ap) and bj (bp) control the sparsity of the balances

(covariates) in the model. To complete the outcome model’s formulation, we assume c0, c1 ∼

Normal(0, hcσ
2) and εi ∼ Normal(0, σ2), where σ2 ∼ Inverse-Gamma(a0, b0) for some a0 > 0

and b0 > 0.

Dirichlet-Multinomial Model: The microbial taxa counts are treated as composi-

tional and assumed to follow a multinomial distribution given the relative abundances ψi

(i.e., zi ∼ Multinomial(żi | ψi), where żi =
∑J

j=1 zij). Conjugate priors for ψi can be spec-

ified as ψi ∼ Dirichlet(γi), where γi is a J-dimensional vector of concentration parameters.

Note that the distributional assumptions for the taxa counts could take on various forms

(Zhang et al., 2017). We chose a Dirichlet-multinomial (DM) model as it accommodates

overdispersion and provides a computationally efficient Markov chain Monte Carlo (MCMC)

routine that exploits data augmentation (Koslovsky et al., 2020). A log-linear regression

framework can be used to relate the relative abundances with the treatment and covariates

by introducing λij = log(γij) and defining

λij = αj + φjti +
P∑
p=1

θjpxip. (3)

In this formulation, αj is a taxon-specific intercept term, φj is the taxon-specific regression

coefficient for treatment, and θj = (θj1, . . . , θjP )′ are the taxa-specific regression coefficients
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corresponding to the covariates. Note that in general the potential covariates included in

Equation (Eq.) (3) do not have to match those included in Eq. (1). Similar to the outcome

model, influential terms can be identified by imposing spike-and-slab priors on each of the

regression coefficients, φj and θjp, with Gaussian slabs centered at 0 and variance r2j . We

assume Beta-Bernoulli priors for the latent inclusion indicators, ϕj ∼ Beta-Bernoulli(av, bv)

and ζjp ∼ Beta-Bernoulli(at, bt), respectively. The prior specification is completed by assum-

ing αj ∼ Normal(0, σ2
α).

Construction of Balances: The outcome model and the DM model are linked via

balances, calculated based on relative abundances, that serve as shared parameters. Balances

are isometric log-ratio transformations, defined proportionally to the difference in the mean

of the log-transformed abundances between two groups or partitions, and are scale invariant

(Egozcue et al., 2003). For a generic balance k, the relative abundancesψ are divided into two

non-overlapping partitions, denoted as ψk+ and ψk−, which we represent as a J-dimensional

vector ηk. The elements of ηk take on values of 1,−1, or 0 with indices corresponding to the

taxa positions in ψ. Specifically, 1 indicates that the corresponding ψj belongs to partition

ψk+, −1 that it belongs to partition ψk−, and 0 implies it is not in either partition. The

balance for a partition is defined as

B(ηk,ψ) =

√
|ψk+||ψk−|
|ψk+|+ |ψk−|

log

(
g(ψk+)

g(ψk−)

)
,

where |·| indicates the dimension of the partition and g(·) the geometric mean. Thus, balances

can be seen as a normalized log ratio of the geometric mean of the elements assigned to each

partition, and βj in Eq. 1 is interpreted at the expected change in Y for a unit increase in the

logarithm of the ratio between the geometric mean of the taxa in ψj+ and the taxa in ψj−.

We define the partitions using sequential binary separation (Egozcue and Pawlowsky-Glahn,

2005), which we formalize in section 2.2.1. Briefly, given a vector of relative abundances

ψ = (ψ1, ψ2, . . . , ψJ), we generate J − 1 sequential binary partitions in which the first

partition is defined as ψ1+ = {ψ1} and ψ1− = {ψ2, . . . , ψJ}, the second partition is defined

as ψ2+ = {ψ2} and ψ2− = {ψ3, . . . , ψJ}, and so on until ψJ−1,+ = {ψJ−1} and ψJ−1,− = {ψJ}.

It is important to note that prediction performance of the model does not depend on the
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order in which the partitions are defined using sequential binary separation (Koslovsky et al.,

2020). Additionally, balances cannot handle observed zero counts and require adjustments

based on assumptions of their occurrence (Mart́ın-Fernández et al., 2015). To handle zero

values for ψ, we use a multiplicative replacement strategy in which zero values are replaced

with relatively small pseudovalues, and the corresponding probability vector is scaled to sum

to one (Martin-Fernandez et al., 2000). This strategy does not affect the modeling of the

relationship between treatment and relative abundances.

2.2 Causal Assumptions and Definition of Mediation Effects

We now discuss the assumptions required to identify the direct and indirect causal ef-

fects in our modeling approach. We operate under the potential outcomes framework (Rubin,

2005). Within this framework, potential outcomes for each subject exist under any possible

treatment value, but the outcome for a subject can only be observed under one treatment

value. The potential outcome under the treatment value the subject does not receive (coun-

terfactual treatment) is typically referred to as the counterfactual outcome (Höfler, 2005).

The total effect of the treatment on the outcome on the additive scale is the summation of

a direct effect and an indirect effect through its relation with the compositional mediators.

One of the key advantages of our approach is that it provides inference on taxon-specific

mediation effects as well as an overall mediation effect for the microbiome, in addition to

inherently estimating model uncertainty. Under the typical stable unit treatment value as-

sumption (i.e., consistency and no interference) (Rubin, 1980, 1986), we assume that:

Assumption 1. 0 < P (Ti = t |Xi = x) < 1,

Assumption 2. 0 < P (B(η,ψi(t)) = b | Ti = t,Xi = x) < 1,

Assumption 3. There is no interaction between Ti and ψi,

Assumption 4a. {Yi(t′, b),B(η,ψi(t))} ⊥ Ti |Xi = x,

Assumption 4b. Yi(t
′, b) ⊥ B(η,ψi(t)) | Ti = t,Xi = x,
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for all x, where t, t′ ∈ {0, 1} are the assigned and counterfactual treatments, respectively,

B(η,ψi(t)) is the corresponding balance set, Xi refers to potential confounders of the out-

come and mediators, as well as additional covariates in each model, and Yi(t, b) is the po-

tential outcome when treatment Ti = t and balance B(η,ψi(t)) = b. Assumptions 4a and

4b, in particular, imply that there are no unmeasured confounders after controlling for the

covariates and treatment (Imai et al., 2010). Note that assumptions 1 and 4a are expected to

hold for the simulation and application study by definition of the randomized design. In con-

trast, assumption 4b is an untestable assumption even with a randomly assigned exposure,

but we explore the robustness of the method with respect to violations of this assumption

in the simulation study. Furthermore, adjustment for post-treatment variables as a subset

of Xi that may confound the mediator-outcome relationship can only be made under the

additional assumption that they are not induced by the exposure, tantamount to a cross-

world independence assumption (Andrews and Didelez, 2020). It should also be noted that

the assumption of no interaction between the treatment and mediator is not necessary for

the identification of direct and indirect effects, though the simulations and applied example

in the current study operate under this assumption.

Under the assumptions above, we can now define the direct effect of the treatment on

the phenotypic response for the ith subject, ∆i, as

∆i = E[Yi(Ti = 1,B(η,ψi(Ti)))− Yi(Ti = 0,B(η,ψi(Ti))) |Xi = xi]

= c1(1− 0) = c1.

Note that the direct effect is shared among all subjects as ∆i = ∆i′ , ∀i 6= i′. The subject-

specific overall indirect effect, δi, is then defined as

δi = E[Yi(Ti,B(η,ψi(Ti = 1)))− Yi(Ti,B(η,ψi(Ti = 0))) |Xi = xi]

=
J−1∑
j=1

βj(E[B(ηj,ψi(Ti = 1,Xi = xi))]− E[B(ηj,ψi(Ti = 0,Xi = xi))]),
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where

E[B(ηj,ψi(Ti = t,Xi = xi))] =

√
J − j

J − j + 1

(
E[log(ψij(Ti = t,Xi = xi))]−

1

J − j

J∑
k=j+1

E[log(ψij(Ti = t,Xi = xi))]

)
, (4)

E[log(ψij(Ti = t,Xi = xi))] = Ψ
(
γij(Ti = t,Xi = xi)

)
−Ψ

( J∑
k=1

γik(Ti = t,Xi = xi)
)
,

γij(Ti = t,Xi = xi) = exp(αj + φjTi +
P∑
p=1

θjpxip),

and Ψ(·) = d
dx

log(Γ(x)) is the digamma function following Honkela et al. (2001), given

the corresponding inclusion indicators ξj = ϕj = 1. Note that the subject-specific overall

indirect effects vary across subjects, since the estimated relative abundances are a function

of treatment assignment and a set of uniquely observed covariates. When there are no

covariates in the DM portion of the model, the population-level overall indirect effect is the

same for each individual.

2.2.1 Strategies for Determining Relative Mediation Effects

Unlike the overall indirect effect, identification of the separate indirect effects is typically

subject to the additional assumption of independence between individual mediators (here,

individual taxa) conditional on Ti and Xi (Imai and Yamamoto, 2013; VanderWeele and

Vansteelandt, 2014). Kim et al. (2019) have recently proposed an alternative decomposition

of indirect effects of individual mediators from the joint (or overall) indirect effect of mul-

tiple mediators using a Bayesian estimation approach, while allowing for interdependence

between mediators. Their approach relies on a joint distributional assumption for the multi-

ple mediators, similar to the proposed method in which we assume a Dirichlet-multinomial

distribution for the multiple mediators. With the proposed approach, the calculation and

interpretation of the relative indirect effects for each taxon depends on the order of the taxa

when constructing the balances via sequential binary separation, though the order makes no

assumptions about the nature of the causal relationships between individual taxa. To better
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understand this concept, consider a balance tree structure that is constructed by creating a

(J − 1) ∗ J-dimensional vector η = (η1, . . . ,ηJ−1)
′, with

η1 = (1,−1,−1, . . . ,−1,−1)

η2 = (0, 1,−1, . . . ,−1,−1)

...

ηJ−1 = (0, 0, 0, . . . , 1,−1),

and calculating the (J−1)−dimensional vector of balancesB(η,ψ) = (B(η1,ψ), . . . , B(ηJ−1,ψ))′.

This implies that the relative mediation effect of the taxon corresponding to the first element

in η1, δi1, given B(η1,ψi), can be defined as

δi1 = β1

√
J − 1

J

(
E[log(ψi1(Ti = 1,Xi = xi))]− E[log(ψi1(Ti = 0,Xi = xi))]

)
, (5)

where E[log(ψi1(Ti = 1,Xi = xi))] and E[log(ψi1(Ti = 0,Xi = xi))] are evaluated using

Eq. (4), similar to the overall mediation effect. As such, when ϕ
[1]
1 and ξ

[1]
1 are both active,

or selected, into the model, the taxon corresponding to ψ1 has a significant mediation effect

relative to the rest of the taxa.

The relative mediation effects of the remaining taxa are expressed as

δi2 =
(
β2

√
J − 2

J − 1
− β1

√
J − 1

J

1

J − 1

)
ϑi2,

δij =
(
βj

√
J − j

J − j + 1
−

j−1∑
k=1

βk

√
J − k

J − k + 1

1

J − k

)
ϑij, (6)

. . .

δiJ = −
J−1∑
k=1

βk

√
J − k

J − k + 1

1

J − k
ϑiJ ,

where ϑij = E[log(ψij(Ti = 1,Xi = xi)) − E[log(ψij(Ti = 0,Xi = xi)). Note that the

relative mediation effects depend on the corresponding latent inclusion indicators ξk and ϕk

for k = 1, . . . , j−1. Details of these derivations are provided in the Supplementary Material.
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Thus, while the relative mediation effects can be estimated for taxon j 6= 1 using our method,

we only obtain direct inference regarding the identification of a non-null δi1 (i.e., δi1 6= 0) via

its corresponding latent inclusion indicators, ξ1 and ϕ1, for a given ordering of the taxa when

constructing the balances. This result is an artifact of the compositional structure of the

multivariate count data, and is therefore not unique to our modeling approach. Similar to

the overall indirect effect, when there are no covariates in the DM portion of the the model,

the population-level relative indirect effects are the same for each individual.

Given the definitions described above, we put forward three different strategies to deter-

mine active relative mediation effects for each taxon and later investigate their performance

in the simulation study. Direct inference on the presence of a relative mediation effect for

a given taxon via its corresponding latent inclusion indicators is only available if the taxon

is assigned to the first index in η1. Therefore, one strategy is to run the MCMC algorithm

J times with the balances constructed using a different compositional element in the first

index on each run. For each run, we identify the jth taxon-specific mediation effect as active

if the marginal posterior probabilities of the corresponding inclusion indicators for φ
[j]
1 and

β
[j]
1 (ϕ

[j]
1 and ξ

[j]
1 , respectively) are both greater than or equal to 0.5, where the superscript

[j] indicates the jth taxon is the 1st element in η1. In the comparative study performed in

section 3.3 below, we refer to this inferential strategy as CMbvs1.

In order to avoid running the MCMC algorithm J times, an alternative strategy for

determining relative mediation effects is to construct 95% credible intervals for each of the

relative mediation effects determined using Eqs. (5) and (6). Effects are then identified as

active if their 95% credible intervals for δij do not contain zero. While this approach does

not perform inference directly on the latent inclusion indicators, model uncertainty is still

propagated into the corresponding effects’ credible intervals as the MCMC algorithm iterates

through different model parameterizations. We refer to this strategy as CMbvs2. A third

potential strategy for determining relative mediation effects (CMbvs3) involves a combination

of strategies 1 and 2. First, the model is run once to determine active treatment effects in the

DM portion of the model based on the marginal posterior probabilities of inclusion (MPPIs)

for ϕj. Then the model is re-run with the inactive terms removed. Relative mediation effects

are then determined based on the 95% credible intervals for δij. Note that for CMbvs2 and
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CMbvs3, selection of active relative indirect effects is determined for each unique covariate

profile across subjects. If there are no covariates in the DM portion of the model, selection

is performed at the population level.

2.3 Posterior Sampling and Inference

To sample the posterior distribution, we adopt the Metropolis–Hastings (MH) within

Gibbs algorithm of Koslovsky et al. (2020) that uses a data augmentation approach to

sample the relative abundances ψ. Let kij represent latent variables, such that ψij =

kij/
∑J

j=1 kij. Thus, zi ∼ Multinomial(żi | k′i/
∑J

j=1 kij), with ki = (ki1, . . . , kiJ)′ and

kij ∼ Gamma(γij, 1). Introducing auxiliary parameters u = (u1, . . . , un)′, such that ui |∑J
j=1 kij ∼ Gamma(żi,

∑J
j=1 kij), results in closed-form Gibbs updates for ui and kij. In-

clusion indicators of the spike-and-slab priors and corresponding regression coefficients are

updated jointly using an Add-Delete MH algorithm (Savitsky et al., 2011). A generic itera-

tion of the MCMC algorithm is described in the Supplementary Material, and more details

are provided in Koslovsky et al. (2020).

Given the output of the MCMC algorithm, MPPIs are used to determine the active

terms at both levels of the model. The MPPIs for treatment, covariates, and balances are

determined by taking the average of their respective inclusion indicators’ MCMC samples

after burn-in. Generally, a term is selected if its corresponding MPPI ≥ 0.50 (Barbieri et al.,

2004). One of the strengths of using discrete spike-and-slab priors for Bayesian variable

selection is that non-active, or excluded, covariates’ corresponding regression coefficients

are set to 0 and effectively removed from the model. As a result, MCMC samples for

regression coefficients with corresponding MPPIs < 1.0 will be zero-inflated (e.g., an MPPI

of 0.6 for a given covariate would result in selection using a 0.5 threshold, but 40% of the

corresponding regression coefficient’s MCMC samples would be equal to zero). While we

favor this approach over refitting the model with selected covariates fixed into the model

since it fully accommodates model uncertainty, this may result in skewed credible intervals

and shrink posterior estimates towards zero.
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3 Simulation Study

The assumptions made in section 2.2 imply that there are no unmeasured confounders in

the model. In observational studies, unmeasured confounding will result in biased exposure

effect estimates (Fewell et al., 2007). In practice, researchers may employ sensitivity analyses

assessing the magnitude of these biases (VanderWeele and Arah, 2011). In this simulation

study, we evaluate the method’s ability to successfully identify and estimate mediation effects

in various settings, including unmeasured mediator-outcome confounding (i.e., the presence

of covariates associated with the mediators and outcome not accounted for in the model) as

well as model misspecification.

3.1 Simulated Data

We evaluated the proposed model in various simulated scenarios to demonstrate its rel-

ative mediation effect selection and parameter estimation performance. In all scenarios,

relative abundances were generated from a Dirichlet distribution and log transformed in the

outcome model, instead of transformed via balances. Specifically, we generated the contin-

uous outcome with yi = c0 + c1ti +
∑J

j=1 βlog,j log(ψij) + εi, where βlog,j represents the true

regression coefficients specified for the log of the jth relative abundance, similar to Zhang

et al. (2020). Thus, the data generation process does not match the assumptions of our pro-

posed model. In each scenario, we generated multivariate compositional count data for n =

200 observations with J = 50 compositional elements. We simulated the treatment received

by each subject, ti, from a Bernoulli distribution with probability 0.5. Let ti = 1 indicate

that subject i received the treatment, and ti = 0 otherwise. We assumed c0 = 0, c1 = 1, and

εi ∼ Normal(0, 1) when generating the continuous outcome. For each subject, the relative

abundances, ψi, were generated similar to Eq. (3), (i.e., λij = αj + φjti). The taxon-specific

intercept terms αj were generated from a Uniform(−2, 0.5), for j = 1, . . . , 50. We simulated

data in which the first three taxa have active indirect effects with φ = (1, 1.2, 1.5, 0, . . . , 0)′

and βlog = (3,−1.5,−1.5, 0, . . . , 0)′ for the corresponding log transformed relative abun-

dances.

In the first scenario, we assumed both levels of the model were correctly specified with
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respect to the casual assumptions (i.e., no model misspecification or unmeasured mediator-

outcome confounding). In scenarios 2 and 3, we evaluated how misspecification of the causal

assumptions (i.e., ignoring influential covariates) in the DM and linear portions of the model,

respectively, may affect inference. Scenario 4 introduced unmeasured mediator-outcome

confounding due to covariates unaccounted for in both levels of the model. To simulate

misspecification of the causal assumptions in scenarios 2, 3, and 4, we included a binary

covariate, U1i, simulated from a Bernoulli distribution with probability 0.5 and a continuous

covariate, U2i, simulated from a standard normal distribution in each layer of the model when

generating the data as necessary, but ignored these covariates when fitting the models. For

the purposes of this simulation, the same covariates affected both the mediators and outcome

in scenario 4. Specifically, for scenarios 2 and 4, we simulated multivariate count data with

λij = αj +φjti + ν1jU1i + ν2jU2i, where ν1j and ν2j are the jth elements of the J-dimensional

vectors ν1 = (0.8, 0, 0, 0, 1.2, 0, . . . , 0)′ and ν2 = (0, 1.2, 0, 0.8, 0, . . . , 0)′, respectively. In

scenarios 3 and 4, we set yi = c0 + c1ti +
∑J

j=1 βlog,j log(ψij) + κ1U1i + κ2U2i + εi, with

κ1 = κ2 = 1.2. We further explored the performance of the method in scenario 1 under

different settings including a skewed distribution for the treatment (i.e., P (Ti = 1) = 0.25)

as well as varying sample sizes and numbers of compositional elements (i.e., n = 50 with

J = 50 and J = 100). Additionally, we evaluated the models in a setting motivated by

the application data with 36 observations, 36 compositional elements, and effect sizes of

φ = (0.7, 1, 1.2, 0, . . . , 0) and βlog = (1.8,−1,−0.8, 0, . . . , 0). Here, we used an imbalanced

treatment assignment with a 2:1 ratio of those assigned to treatment and control, similar to

that in the application study. We evaluated the model in the four scenarios outlined above,

with U1i and U2i included in the data generation as necessary.

3.2 Parameter Settings and Performance Measures

Simulation results were obtained by assuming uniform priors on the parameters of the

Beta-Bernoulli distributions for the latent inclusion indicators in the linear and DM regres-

sion models (i.e., aj = bj = ap = bp = av = bv = at = bt = 1). As such, we impose no

prior knowledge on whether or not covariates are active in both levels of the model as well

as whether or not the balances are associated with the continuous outcome or treatment is
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associated with the relative abundances. We set the scale parameters hc = hβ = hκ = 1,

representing weakly informative priors for the slab variances, and assumed a weakly infor-

mative prior for σ2 in Eq. (1) (i.e., a0 = b0 = 1). Additionally, we set the prior variances

for the intercept terms in the DM portion of the model σ2
α = 1 and variances for the cor-

responding regression coefficients for treatment and covariates associated with the relative

abundances r2j = 10 for all j = 1, . . . , J . This places a 95% prior probability between ±1.96

and ±6.20, respectively. We initiated the MCMC chains at zero for all regression coefficients

in both levels of the model. Each MCMC chain was run with 5000 iterations and thinned

to every 10th iteration with a 250 iteration burn-in. Convergence was assessed by examining

traceplots for φ and β.

Selection performance was evaluated via sensitivity (SENS), specificity (SPEC), and

Matthew’s correlation coefficient (MCC), a balanced measure of the quality of binary clas-

sification (Powers, 2020). These metrics are defined as

SENS =
TP

FN + TP
; SPEC =

TN

TN + FP

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP, TN, FP, FN represent the true positives, true negatives, false positives and false

negatives based on the selection and exclusion of relative indirect effects. To evaluate and

compare the estimation performance for the population-level (since there are no covariates

in the model) direct and overall indirect effects of the models, we calculate the average bias,

mean squared error, and coverage probabilities of the equal-tail credible intervals. Results

were averaged over 50 replicated data sets for each simulated setting described in section

3.1.

3.3 Methods Comparison

We compared the results of our model with the methods proposed in Zhang et al. (2019)

and Zhang et al. (2020), since these methods have shown superior performance in identifying

relative indirect effects when compared to other existing methods. These models take a
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penalized approach to shrink regression coefficients corresponding to both the direct and

indirect effects using a debiased Lasso approach (Zhang and Zhang, 2013). In both models,

taxon-specific mediation effects are tested as

H0j : φ
[j]
1 β

[j]
1 = 0 versus HAj : φ

[j]
1 β

[j]
1 6= 0,

where the superscript [j] indicates the jth taxon is the 1st element in η1. Note that these

approaches require the model to be run J times for inference on each taxon, similar to

CMbvs1. For the method proposed by Zhang et al. (2019), which we denoted as B-H, a joint

significance test is used to test the null hypothesis above. Specifically, the p-value for the

indirect effect, Pjoint[j] , is set to max{P
φ
[j]
1
, P

β
[j]
1
}, where P

φ
[j]
1

= 2(1− Φ(abs(φ
[j]
1 )/σ

φ
[j]
1

)) and

P
β
[j]
1

= 2(1−Φ(abs(β
[j]
1 )/σ

β
[j]
1

)), with abs(·) denoting the absolute value and Φ(·) representing

the cumulative density function of a normal distribution. For the second comparative model

(CT-Lasso), Zhang et al. (2020) addressed potential multiple testing issues associated with

the B-H approach by proposing a closed testing-based selection procedure to calculate the

p-value for each mediator (see Algorithm 1 in Zhang et al. (2020) for more details).

3.4 Results

Table 1 presents the results of the simulation study across all scenarios. With a correctly

specified model (scenario 1), all methods provided excellent performance in terms of sensi-

tivity (SENS > 0.97, with the exception of CMbvs2 and CMbvs3, which obtained SENS =

0.773 and SENS = 0.720, respectively). CMbvs1, CT-Lasso, and B-H obtained the best per-

formances overall in scenario 1, with MCC > 0.98. CMbvs2 obtained the lowest specificity

(SPEC = 0.832) among the Bayesian methods, resulting in the worst performance overall in

scenario 1 (MCC = 0.357). In scenario 2, all methods were able to maintain high specificity.

However, the proposed methods obtained lower sensitivity in scenario 2 relative to scenario

1. Further investigation revealed that the reduction in sensitivity for the relative mediation

effects in the presence of model misspecifiation in the DM portion of the model resulted in

poorer selection performance in the linear portion of the model (see Supplementary Table

S1). We attribute this downstream reduction in performance to poorer estimation of the rel-
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ative abundances from the DM portion of the model. In scenario 3, CMbvs1 demonstrated

the best performance in terms of sensitivity, specificity, and MCC. In scenario 4, CMbvs1

and CT-Lasso performed the best overall (MCC = 0.738 and MCC = 0.791, respectively).

While the other methods maintained relatively high specificity, their overall performance

greatly declined in the presence of unmeasured confounding due to a greater reduction in

sensitivity.

In Table 2, we report the estimation performance for the direct effect and the overall

indirect effect using the proposed model (CMbvs1). In scenario 1 (i.e., no unmeasured con-

founding), the bias for the direct effect and overall indirect effect estimated by CMbvs1 was

0.662 and 1.252, respectively, the corresponding MSE was 1.255 and 4.109, respectively, and

94% of replicates recovered the true direct effect, while all replicates recovered the true over-

all indirect effect in the 95% posterior credible intervals. In scenario 3 (i.e., misspecified LM

portion of the model), CMbvs1 maintained similar performance as in scenario 1. However,

the proposed method’s estimation performance suffered in scenarios 2 and 4 (i.e., misspeci-

fication of the DM portion of the model and unmeasured confounding). These results align

with the reduction in selection performance observed in these settings.

To further investigate model performance, we considered alternative data generation set-

tings in scenario 1 (Table 3). With a lower proportion of observations assigned to treatment

(i.e., P (Ti = 1) = 0.25), the methods demonstrated a reduction in sensitivity. As expected,

selection performance for all methods decreased with a smaller sample size and larger number

of compositional elements. In the Supplementary Material, we provide additional simulation

results, including more details of the selection performance for CMbvs1 in both levels of the

model in various scenarios (Supplementary Tables S1-S3), a comparison of all models under

different data generation settings in scenario 4 (Supplementary Table S4), as well as the

acceptance probability for α and φ across MCMC iterations (Supplementary Table S5).

Table 4 presents the results of the simulation study with data generated similar to the

application study in the 4 scenarios outlined above. In these settings, all methods obtained

lower selection performance due to the relatively small sample size, as expected. We ob-

served that CMbvs1 obtained the best overall selection performance in scenarios 1, 2, and

3 (MCC = 0.625, 0.435, and 0.564, respectively). The two comparison methods performed
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reasonably well when the LM portion of the model was correctly specified. However, ignor-

ing influential covariates when modeling the multivariate count data resulted in considerably

lower sensitivity and MCC for the CT-Lasso and B-H methods compared to the proposed

method.

Taken overall, our results indicate CMbvs1 as the best strategy, as it typically obtained

the best overall selection performance due to high specificity across simulations. CMbvs2

often gave the lowest specificity and sensitivity, resulting in the worst performance overall.

CMbvs3, the hybrid approach, has shown to be more robust in small n and larger J settings

and in the presence of unmeasured confounding. Since CMbvs3 does not require J fits, we

recommend it in addition to CMbvs1 in these select settings.

3.5 Sensitivity Analysis

To investigate our model’s sensitivity to prior specification, we set each of the hyper-

parameters to the values used in section 3.2 (referred to as the baseline setting) and then

evaluated the effect of manipulating each term on the results obtained. Specifically, we in-

vestigated sensitivity to the prior probability of inclusion, spike-and-slab variances in the

Dirichlet-multinomial model, scale parameters in the linear model, and hyperparameters

for the variance of the error terms. For comparison to the baseline setting, we randomly

selected a simulated data set from scenario 4 as reference and re-ran our model with all

three strategies. Each MCMC algorithm was run for 5000 iterations and thinned to every

10th iteration, with the first 250 samples as burn-in. Results of the sensitivity analysis are

presented in Table 5. We found that with smaller prior probabilities of inclusion (i.e., 1%,

aj = ap = av = at = 0.02 and bj = bp = bv = bt = 1.98, and 10%, aj = ap = av = at = 0.2

and bj = bp = bv = bt = 1.8) our proposed model identified fewer active mediators, as

expected. We observed that CMbvs1 was relatively robust to the specification of the spike-

and-slab variances in the DM portion of the model, r2j , and the scale parameters in the linear

model, hc, hβ, and hκ. Lastly, we found moderate sensitivity of CMbvs1 to the hyperparam-

eter specification for the variance of the error terms in the linear model which resulted in

the underselection of balances. Compared to CMbvs1, CMbvs2 typically obtained more false

positives and CMbvs3 was more sensitive to the specification of r2j .
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4 Application

We applied the proposed joint model to a benchmark data set collected to study the

impact of sub-therapeutic antibiotic treatment on gut microbiota and body weight in early-

life mice (n = 57) (Schulfer et al., 2019). DNA and operational taxonomic units (OTUs) were

extracted with the 96-well MO BIO PowerSoil DNA Isolation Kit and QIIME2, respectively

(Caporaso et al., 2010). OTU counts used in this analysis were extracted on day 26 of the

study, and weights of mice measured on day 116. Prior to analysis, we filtered out taxa with

>90% zero read counts and used a pseudovalue of 0.5 for zero reads when constructing the

balances. Following Zhang et al. (2020), we first analyzed the male mice samples only. The

antibiotic treatment group was assigned as exposure (ti = 1 for 23 mice) and compared with

the control group (ti = 0 for 13 mice). The weights at sacrifice were treated as the outcome

and standardized prior to analysis.

Assumptions of no unmeasured confounding can be broken up based on assumptions

4a and 4b. One (4a) is expected to hold in this application because of the randomized

study design; the other (4b) is untestable. In the simulation study, we demonstrate the

robustness of the proposed model under circumstances where assumption 4b is violated. In

this application, unmeasured common causes of the mediator (microbiome) and outcome

(body weight), would lead to violation of this assumption. Examples of such common causes

could be genetics, medication use, stress, or injury. The combined strength of the associations

between any of these factors and the microbiome and outcome, however, is expected to be

weaker compared to the effect of diet, thus potentially limiting the potential for bias (Cohen

et al., 2019; Rothschild et al., 2018; Wen and Duffy, 2017). Microbes not considered as part of

the analysis could also serve as potential mediator-outcome confounders or even treatment-

induced mediator-outcome confounders, though omitted microbes typically appear in very

low frequencies in the study population, which would also limit the potential for bias.

For inference using the proposed Bayesian joint model, the MCMC algorithm was run

for 15000 iterations and the chain was thinned to every 10th iteration, with the first 1000

iterations treated as burn-in. The hyperparameters were set similar to those described in

section 3.2. Convergence was determined using trace plots of the regression coefficients. Each
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run took roughly 9 seconds for an overall computation time of around 5 minutes for CMbvs1.

Inclusion in the model was determined using the median model approach (i.e., MPPI >

0.50). The results were additionally compared to the penalized approaches discussed in the

simulation study.

4.1 Results

Plots of the corresponding MPPIs of φ
[j]
1 and β

[j]
1 for each of the j = 1, . . . , J taxon in

the first position of η1, obtained with CMbvs1, are shown in Figure 2. A 0.50 threshold

on the MPPIs identified Candidatus Arthromitus and Clostridiales as potential mediators.

The estimated relative mediation effect for Candidatus Arthromitus was −0.033, with a 95%

credible interval of (−0.707, 0.004), and that for Clostridiales was −0.414 (−1.077, 0.001).

The estimated overall mediation effect was −0.445 (−1.129, 0.171), and the estimated di-

rect effect of treatment on mice body weight was 0.488 (0.008, 1.021). With CMbvs2, we

identified Coriobacteriaceae, S24-7, and Akkermansia as potential mediators. The estimated

relative mediation effect for Coriobacteriaceae was 0.084, with a 95% credible interval of

(0.015, 0.364), the relative mediation effect for S24-7 was 0.478 (0.020, 1.409), and the rela-

tive mediation effect for Akkermansia was −0.076 (−0.484,−0.028). CMbvs3 did not identify

any relative mediation effects. The B-H method also identified Candidatus Arthromitus, in

addition to Clostridiaceae, Clostridium2, Streptococcus, Coriobacteriaceae, Enterococcus,

Streptophyta, and Turicibacter. The CT-Lasso method identified Candidatus Arthromitus

and Coriobacteriaceae.

To demonstrate our approach’s flexibility in accommodating and identifying potential

confounders, we performed a second analysis, using the full data set, including sex in both

levels of the model. We again filtered out taxa that had non-zero reads in less than 10% of the

samples, leaving 37 taxa for inference. Similar to the male-only analysis, CMbvs1 selected

Candidatus Arthromitus and Clostridiales as potential mediators. The relative mediation

effect for Candidatus Arthromitus was −0.049 (−0.751, 0.000), and that for Clostridiales was

−0.028 (−0.101, 0.000). The estimated overall mediation effect was −0.112 (−0.862, 0.102),

and the direct effect of treatment on mice weight was 0.719 (0.460, 0.971). We also iden-

tified a significant effect of sex in the outcome model with a posterior mean of 1.265
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Figure 2: Benchmark Study: Results from the DM portion (2a) and the outcome portion
(2b) of the joint model. Marginal posterior probabilities of inclusion (MPPIs) for the cor-

responding φ
[j]
1 , j = 1, . . . , J , terms (2a) and β

[j]
1 , j = 1, . . . , J , terms (2b), in the male

mice only analysis, obtained from the J runs of the model using the CMbvs1 strategy. The
vertical line at 0.5 represents the inclusion threshold. Blue lines indicate selected terms.

(1.035, 1.520). CMbvs2 selected Erysipelotrichaceae, Streptophyta, S24-7, and Clostridi-

ales as potential mediators with estimated relative mediation effects of 2.567 (1.872, 3.241),

−0.137 (−0.703,−0.049), 0.425 (0.259, 0.637) and −0.363 (−1.305,−0.214), respectively.

CMbvs3 also identified S24-7 and Clostridiales as potential mediators with corresponding

mediation effects 0.092 (1.194, 2.895) and 0.156 (0.038, 0.271). Applying the comparative

models, which adjust for but do not perform selection on potential confounders, to the full

data set, we observed that the B-H model identified Candidatus Arthromitus and Clostridi-

ales, together with Streptophyta, Turicibacter and other 11 taxa. Moreover, the CT-Lasso
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model identified Candidatus Arthromitus in addition to Streptophyta, RF39, Clostridiaceae,

Turicibacter, and Streptococcus. With the inclusion of sex in the model, we observed a re-

duction in the overall indirect effect with the proposed method using CMbvs1. In both the

male-only and full data set analyses, we identified a “competitive mediation effect” as the

direct effect of treatment on mice body weight and the overall mediation effect were in the

opposite direction (Zhao et al., 2010). As such the microbiome acts as a suppressing effect,

reducing the total effect of treatment on mice weight.

5 Discussion

In this work, we proposed a formulation of a Bayesian joint model for compositional

data that allows for the identification, estimation, and uncertainty quantification of various

causal estimands in mediation analysis. The proposed model takes advantage of sparsity-

inducing priors to facilitate inference in high-dimensional compositional settings. Compared

to existing approaches for high-dimensional compositional mediators, the proposed method

employs discrete spike-and-slab priors to achieve simultaneous inference regarding the ex-

istence of direct effects, relative indirect effects, and overall indirect effects, in addition to

potential covariates. Through simulation, we have demonstrated that our method obtains

similar selection performance for relative mediation effects compared to existing approaches.

All methods demonstrated a reduction in selection performance in the presence of unmea-

sured confounding and with misspecification of the linear predictor in the outcome model.

The frequentist methods, CT-Lasso and B-H, were relatively robust to misspecification in

the DM portion of the model. We have also applied our method to a benchmark data

set investigating the sub-therapeutic antibiotic treatment effect on body weight in early-life

mice, in which we observed a negative overall mediation effect and a positive direct effect

of treatment. Overall, the proposed method identified fewer relative mediation effects than

the alternative approaches, which was expected given the simulation results. As such, our

method may favor more sparse models in practice which would result in fewer false positives

but potentially more false negatives relative to the competing methods.

Using simulated data, we explored three strategies for posterior inference of relative
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mediation effects using the proposed method. The first strategy obtained the best selection

performance overall but requires refitting the model J times. The second strategy, which

only requires fitting the model once, demonstrated the worst selection performance overall.

CMbvs3, the hybrid approach, was more robust in small n and larger J settings and in the

presence of unmeasured confounding. Based on our investigation, we recommend using the

first strategy for moderate to large data sets when more sparsity is desired and additionally

using CMbvs3, which does not require J fits, in small n and larger J settings and in the

presence of potenital unmeasured confounding.

Using the proposed CMbvs1 approach for inference, researchers may naively cycle through

each taxon without using information from the previous fit to inform the selection of the

next taxon to investigate. However, in the simulation study we observed that if the jth taxon

is associated with the outcome for j = 2, . . . , J , then βj−1 is typically selected, regardless

of the inclusion status of other terms in the outcome model. Moreover, if the relative

mediation effect exists for a given taxon, the corresponding treatment effect in the DM

portion of the model must be active. This information can be used to guide which taxon’s

relative indirect effect should be explored next, resulting in a dramatic reduction in total

computation time in sparse settings. With CMbvs1, the estimation of relative indirect effects

only depends on β1, α1, and φ1 (when there are no covariates in the model). However with

CMbsv2, relative indirect effects are dependent on a large number of estimated effects (i.e.,

βk, αk, and φk for k = 1, . . . , j − 1 for the jth element in ψ). Thus, a major limitation of

CMbsv2 is that there is more opportunity for error to propagate into the estimate for δj,

and estimation performance is highly dependent on the ordering of the taxa. Furthermore,

the three strategies were proposed for relative mediation effect selection when the balances

are constructed using sequential binary separation. A future extension of this work would

be to extend the model space to include the balance structure, in a similar spirit to the

work of Huang and Li (2021), who constructed a Bayesian hierarchical model with variable

selection to learn the balance structure that mediates the effect of treatment on the outcome.

While this would increase computation time, it would provide simultaneous inference on the

presence of any relative indirect effect, while fully incorporating model uncertainty.

The proposed method is designed to perform selection on each potential covariate in the
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model. When the goal of the analysis is to draw inference on the treatment effect, Thomas

et al. (2007) and Antonelli and Dominici (2021) suggest forcing treatment into the model

(i.e., not performing selection on the treatment effect). Our approach follows this setting.

In simulation results not shown, we found that performing selection on the direct effect of

treatment in the linear portion of the model did not affect selection performance for the rel-

ative mediation effects. Also, in the formulation of our causal framework we have assumed

a randomized treatment. Our method, however, could be extended to observational studies

where treatment-outcome and treatment-mediator relationships share (measured) common

causes, which can also be accounted for in the joint model. For example, in an observational

study of human diet (treatment), microbiome (mediator), and obesity (outcome), we would

assume that all common causes of diet and obesity are adjusted for in the model. Under this

scenario, both assumptions on unmeasured confounding (4a and 4b) would be untestable.

Similar sensitivity analysis for the presence of unmeasured exposure-outcome confounding

can be conducted as was the case for unmeasured mediator-outcome confounding in the

simulations of the current study. Lastly, the current formulation assumes that no interac-

tion exists between treatment and mediator, though this is not a necessary assumption for

quantification of direct and indirect effects. The proposed approach could be extended to

accommodate such interactions.
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Method
Scenario 1 Scenario 2

SENS SPEC MCC SENS SPEC MCC
CMbvs1 0.972 1.000 0.986 0.613 1.000 0.773
CMbvs2 0.773 0.832 0.357 0.400 0.970 0.394
CMbvs3 0.720 0.997 0.809 0.383 0.997 0.567

CT-Lasso 0.993 1.000 0.996 1.000 0.998 0.986
B-H 0.993 0.999 0.989 1.000 0.994 0.953

Scenario 3 Scenario 4
SENS SPEC MCC SENS SPEC MCC

CMbvs1 0.867 1.000 0.927 0.560 1.000 0.738
CMbvs2 0.713 0.805 0.294 0.326 0.938 0.233
CMbvs3 0.713 0.998 0.820 0.290 1.000 0.527

CT-Lasso 0.667 1.000 0.808 0.642 1.000 0.791
B-H 0.844 0.991 0.846 0.867 0.944 0.634

Table 1: Simulation results for the proposed method, with three strategies for determining
the relative mediation effects, and the comparison methods under four scenarios: (1) correctly
specified model, (2) misspecification in the DM portion of the model, (3) misspecification
in the linear portion of the model, and (4) unmeasured confounding. Results are averaged
across 50 replicate data sets. SENS - sensitivity; SPEC - specificity; MCC - Matthew’s
correlation coefficient.

Scenario
Direct Effect Overall Indirect Effect

Bias MSE COV Bias MSE COV
1 0.662 1.255 0.94 1.252 4.108 1.00
2 6.600 85.176 0.65 11.153 215.058 0.78
3 0.805 1.140 0.86 1.611 6.022 0.94
4 8.668 101.709 0.54 14.658 293.547 0.62

Table 2: Simulation results for estimating the direct and overall indirect effects using CMbvs1
with n = 200 and J = 50 averaged over 50 simulations. Bias - the difference between the
posterior mean effect and the true effect. MSE - the mean squared error between the
posterior mean effect and the true effect. Coverage - the proportion of replications in
which the 95% posterior credible interval of the effect included the true value.
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Method
P (Ti = 1) = 0.25 n = 50, J = 50 n = 50, J = 100

SENS SPEC MCC SENS SPEC MCC SENS SPEC MCC
CMbvs1 0.833 1.000 0.908 0.433 1.000 0.646 0.247 0.988 0.454
CMbvs2 0.673 0.970 0.603 0.380 0.962 0.345 0.460 0.935 0.331
CMbvs3 0.633 0.998 0.758 0.340 0.999 0.565 0.420 0.998 0.615

CT-Lasso 0.800 1.000 0.889 0.233 0.999 0.454 0.280 0.999 0.502
B-H 0.947 1.000 0.971 0.347 1.000 0.577 0.233 1.000 0.471

Table 3: Simulation results for the proposed method, with three strategies for determining
the relative mediation effects, and the comparison methods in scenario 1 with various data
structures. Results are averaged across 50 replicate data sets. SENS - sensitivity; SPEC -
specificity; MCC - Matthew’s correlation coefficient.

Method
Scenario 1 Scenario 2

SENS SPEC MCC SENS SPEC MCC
CMbvs1 0.422 0.999 0.625 0.233 0.997 0.435
CMbvs2 0.400 0.838 0.171 0.267 0.974 0.317
CMbvs3 0.278 0.996 0.471 0.267 0.999 0.380

CT-Lasso 0.289 1.000 0.520 0.060 1.000 0.175
B-H 0.353 0.006 0.544 0.087 1.000 0.287

Scenario 3 Scenario 4
SENS SPEC MCC SENS SPEC MCC

CMbvs1 0.333 1.000 0.564 0.167 0.995 0.356
CMbvs2 0.456 0.877 0.257 0.244 0.974 0.290
CMbvs3 0.322 0.995 0.506 0.156 1.000 0.380

CT-Lasso 0.200 1.000 0.431 0.000 1.000 0.000
B-H 0.260 0.998 0.470 0.033 1.000 0.175

Table 4: Simulation results for the proposed method on data simulated similar in structure
to the application data using the three strategies for determining the relative mediation
effects and the comparison methods under four scenarios: (1) correctly specified model, (2)
misspecification in the DM portion of the model, (3) misspecification in the linear portion of
the model, and (4) unmeasured confounding. Results are averaged across 50 replicate data
sets. SENS - sensitivity; SPEC - specificity; MCC - Matthew’s correlation coefficient.
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Method
Baseline PrPI = 1% PrPI = 10%

SENS SPEC MCC SENS SPEC MCC SENS SPEC MCC
CMbvs1 0.667 1.000 0.808 0.667 1.000 0.808 0.333 1.000 0.565
CMbvs2 0.667 0.979 0.645 1.000 0.723 0.368 0.333 0.894 0.166
CMbvs3 0.667 1.000 0.808 0.667 0.979 0.645 0.667 1.000 0.808

r2j = 5 r2j = 20 hc,β,κ = 5
SENS SPEC MCC SENS SPEC MCC SENS SPEC MCC

CMbvs1 1.000 1.000 1.000 0.667 1.000 0.808 0.667 1.000 0.808
CMbvs2 0.333 0.957 0.291 0.667 0.851 0.320 0.667 0.830 0.294
CMbvs3 0.333 1.000 0.565 0.333 0.979 0.378 1.000 1.000 1.000

hc,β,κ = 20 a0 = b0 = 0.1 a0 = b0 = 10
SENS SPEC MCC SENS SPEC MCC SENS SPEC MCC

CMbvs1 0.667 1.000 0.808 0.333 1.000 0.565 1.000 1.000 1.000
CMbvs2 0.667 0.979 0.645 0.000 1.000 0.000 0.667 0.787 0.069
CMbvs3 0.667 1.000 0.808 0.333 1.000 0.565 1.000 0.979 0.857

Table 5: Results of the sensitivity analysis for the proposed method with three selection
strategies on data simulated from scenario 4. Baseline settings refers to the model fit with
hyperparameter settings from the simulation study. PrPI - prior probability of inclusion;
SENS - sensitivity; SPEC - specificity; MCC - Matthew’s correlation coefficient.
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