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Abstract
Intensive longitudinal data collected with ecological momentary assessment methods capture information on
participants’ behaviors, feelings, and environment in near real-time. While these methods can reduce recall
biases typically present in survey data, they may still suffer from other biases commonly found in self-reported
data (e.g., measurement error and social desirability bias). To accommodate potential biases, we develop a
Bayesian hidden Markov model to simultaneously identify risk factors for subjects transitioning between dis-
crete latent states as well as risk factors potentially associated with them misreporting their true behaviors. We
use simulated data to demonstrate how ignoring potential measurement error can negatively affect variable
selection performance and estimation accuracy. We apply our proposed model to smartphone-based ecological
momentary assessment data collected within a randomized controlled trial that evaluated the impact of incen-
tivizing abstinence from cigarette smoking among socioeconomically disadvantaged adults.

Translational Abstract
Continuous-time hidden Markov models enable researchers to study the relations between risk factors and out-
comes repeatedly measured at unbalanced, unequally spaced assessment times while accommodating measure-
ment error. Despite extensive implementation of variable selection methods designed to identify potential
relations in exploratory settings for hypothesis generation, currently none have been applied to this class of
models commonly found in psychological research. To fill this gap, we develop a Bayesian continuous-time
hidden Markov model with variable selection priors and provide a flexible R package to facilitate the applica-
tion of our method in practice. We showcase the variable selection performance and estimation accuracy of
our method on simulated data and apply it to intensive longitudinal data collected in a smoking cessation trial
to identify potential risk factors associated with smoking behaviors after a quit attempt.

Keywords: Bayesian variable selection, hidden Markov model, measurement error, mHealth, smoking
cessation
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Psychological researchers often use mobile health (mHealth)
methods to monitor participants in their natural environments to
improve health-related outcomes through behavioral change. For
example, clinical psychologists have used smartphones to collect

intensive longitudinal data via ecological momentary assessments
(EMAs), which aim to capture psychological, emotional, and envi-
ronmental factors that may relate to a behavioral outcome in near
real-time. The high-temporal resolution of these data helps reduce
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memory errors and recall biases typically present in self-reported
data (Shiffman et al., 2008). More recently, researchers have used
smartphones and other wearable devices to passively capture
behavioral and health-related information, including patterns of
activity and movement via geospatial measurements and acceler-
ometers as well as physiological factors, such as heart rate, skin
conductance, and voice characteristics (Bentley et al., 2019). As a
result, researchers are able to continuously collect multimodal, in-
tensive longitudinal data on subjects’ potential risk factors and
outcomes from a third-person observational perspective which
enables ecological validity (Nelson & Allen, 2018). These meth-
ods have not only helped researchers better understand complex
psychological and behavioral processes, but additionally have
enhanced their ability to design, evaluate, and deliver tailored
intervention strategies based on a subject’s risk profile at critical
moments throughout the assessment period (Businelle et al., 2016;
Hébert et al., 2020; Heron & Smyth, 2010; Nahum-Shani et al.,
2018; Rehg et al., 2017).
Despite the potential utility of mHealth methods in psychologi-

cal research, remote data collection presents a challenge for the
verification of study outcomes. For example, within the context of
smoking cessation research, accurate reporting of smoking status
is important not only for verifying smoking cessation intervention
outcomes, but for identifying moments of high risk that could
serve as targets for just-in-time adaptive interventions (Nahum-
Shani et al., 2018). However, smokers may underreport smoking
behaviors due to social desirability bias (Patrick et al., 1994).
Thus, recent research has explored methods to biochemically vali-
date smoking status remotely, including direct measurement (e.g.,
using personal carbon monoxide monitors; Kendzor et al., 2020;
McClure et al., 2018) and indirect measurement via sensors (e.g.,
heart rate; Herbec et al., 2020). However, sensor data are often
messy, typically require extensive preprocessing, which can
smooth out signals, and have accuracy levels that depend on the
type of metric being measured (Bentley et al., 2019; Schukat et al.,
2016). Even with high-quality data, it is difficult to determine or
map which factors are attributed to a change in a particular physio-
logical measurement (Schukat et al., 2016). By ignoring potential
measurement error, researchers may obtain biased estimates for
the relations between outcomes and risk factors when fitting
regression models (Carroll et al., 2006; Yen & Chen, 2018).
One strategy for accommodating potential measurement error and

improving the internal validity of the study is through data integration
or fusion (Kumar et al., 2013; Mitchell, 2007; Rehg et al., 2017). With
this approach, researchers may couple actively collected data with pas-
sively collected data to provide objective information that contextual-
izes and validates self-reported momentary behavior and mood (Bertz
et al., 2018; Bond et al., 2014; Kumar et al., 2013). In theory, reliable
and accurate sensor data could even be used to replace self-reported
data, reducing patient burden while increasing the temporal resolution
of the data (Bertz et al., 2018; Blaauw et al., 2016).
More commonly, researchers accommodate potential measurement

error through their analytical approach via latent variable models (Ban-
dalos, 2018). A variety of statistical methods have been developed to
accommodate measurement error for both continuous and discrete out-
comes (Carroll et al., 2006; Gustafson, 2003; Li & Vuong, 1998; Yen
& Chen, 2018). One of the most popular approaches for handling mea-
surement error in longitudinal psychological studies is latent or hidden
Markov models (HMMs; Yen & Chen, 2018). These methods are an

extension of the class of multistate Markov (MSM) models, which
were designed to model subjects as they transition between discrete
states over time (Kalbfleisch & Lawless, 1985; Ma et al., 2015, 2018;
Peng et al., 2019). HMMs extend MSM models by assuming that the
repeated data collected on subjects are realizations (emissions) of an
unobserved process, characterized by discrete latent states, which sub-
jects transition through over time. As such, these methods are com-
monly applied to longitudinal data collected in psychological studies
to investigate constructs that are difficult to measure directly and to
accommodate potential measurement errors.

A primary objective in longitudinal data analyses is identifying
or reaffirming complex relations between risk factors associated
with outcomes over time (Walls, 2013). While there are numerous
MSM and HMM tutorials and software packages available that
provide guidelines for performing model selection (Jackson, 2011;
Kaplan, 2008; Visser, 2011; Visser et al., 2002), little methodolog-
ical work has been devoted to developing automated variable
selection methods for hypothesis generation. Recently, Reulen and
Kneib (2016) and Sennhenn-Reulen and Kneib (2016) designed
variable selection methods for MSM models when the exact time
of transition is known. Additionally, Koslovsky et al. (2018)
developed a variable selection method for MSM models using ex-
pectation-maximization for interval-censored data (Dempster
et al., 1977). While these methods are suitable for the longitudinal
data sets typically found in psychological research (i.e., unbal-
anced, randomly spaced assessment times), they ignore potential
measurement error. Recently, researchers have designed variable
selection methods for discrete-time hidden Markov models using
Bayesian and frequentist techniques (Kang et al., 2019; Rashid et
al., 2014; Spezia, 2020). However, these methods are inappropri-
ate for unequally spaced assessment times and are therefore not
applicable to a majority of psychological studies.

The primary objective of this article is to develop a novel, fully
Bayesian variable selection approach for continuous-time hidden Mar-
kov models. The proposed approach accommodates potential biases
by simultaneously identifying risk factors for subjects transitioning
between discrete latent states as well as risk factors associated with
them potentially misreporting their true behavior. The development of
the proposed model is motivated by intensive longitudinal data col-
lected in the PREVAIL II study, a randomized controlled trial
designed to evaluate the efficacy of offering abstinence-contingent fi-
nancial incentives for smoking cessation among socioeconomically
disadvantaged adults. In this study, participants were repeatedly
prompted with ecological momentary assessments of their current
environment, affect, behaviors, social interactions, and recent smoking
behaviors on a study-provided smartphone. Assessments were
prompted five times per day over a four week period. Smoking absti-
nence, defined as expired carbon monoxide less than or equal to 6
ppm (based on current recommendations; Benowitz et al., 2020), was
biologically verified at in-person visits every week. Instead of model-
ing the observed transitions between momentary smoking states
directly, we assume a hidden layer for the true response sequence and
consider the reported behavior as an emission process from the truth to
account for potential reporting biases and measurement errors. By per-
forming variable selection in both levels of the model, we are able to
learn which risk factors are associated with transitions between discrete
latent smoking states, and also which risk factors are associated with
subjects misreporting their smoking behaviors. We use simulated data
to demonstrate the variable selection performance and estimation
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accuracy of our method in various settings, including how ignoring
potential measurement error can negatively affect results. While devel-
oped for intensive longitudinal data collected in mHealth studies for
smoking cessation, the proposed method can be used to perform vari-
able selection in research settings where a two-state continuous-time
hidden Markov model with binary emissions is suitable. To help
researchers use our proposed approach in practice, we provide R code
and an accompanying vignette applying our method to simulated data.
In the Methods section, we introduce the proposed Bayesian

variable selection method for both continuous-time multistate and
hidden Markov models. In the Case Study, we apply our model to
intensive longitudinal data collected via smartphone to investigate
the benefits of providing smoking incentives to promote smoking
cessation. In the Simulation Study, we evaluate the selection and
estimation performance of our proposed model on simulated data
in various settings and compare to the MSM model. We conclude
with final remarks.

Method

To introduce HMMs, we first describe how to construct transi-
tion probabilities for a continuous-time multistate Markov model,
which could be used to study the relations between risk factors and
transitions ignoring potential measurement error. We then extend
this model to account for measurement error via the HMM and
describe how to incorporate variable selection through prior speci-
fication using a Bayesian framework. In this work, we focus on
two-state models based on our application to smoking behaviors.

Modeling Hidden and Observed States

Let yij [ {0, 1} represent the observed binary outcome of the ith

subject, i ¼ 1; 2; . . . ; _N , at the jth assessment time, j ¼ 1; . . . ; ni.
For example, yij may capture a subject’s reported smoking behav-
ior (smoking or nonsmoking), activity status (active or sedentary),
or medication adherence (yes or no). This formulation allows for
unbalanced and unequally spaced assessment times across sub-
jects. We define hij 2 f0; 1g as the true, latent or hidden state for
individual i at the jth assessment time.

Transition Probabilities

Transition probabilities are modeled using a continuous-time mul-
tistate Markov model framework, similar to Kalbfleisch and Lawless
(1985) and Koslovsky et al. (2018). In this two-state setting, k and l
represent the positive transition rates from 0! 1 and 1! 0, respec-
tively (Cox & Miller, 2017). The transition rate or intensity matrix
Q for a homogenous Markov process can be represented as

current state

0 1
previous 0

state 1

"k k

l "l

" #

where the elements represent the instantaneous rate at which the
continuous-time Markov chain transitions between states. The corre-
sponding transition probability matrix P ¼ expðQdijÞ is defined as

current state
0 1

previous 0
state 1

Pð0; 0 j dijÞ Pð0; 1 j dijÞ
Pð1; 0 j dijÞ Pð1; 1 j dijÞ

! "

where P(0,1jdij) is the probability of transitioning from state 0 to
state 1 given dij ¼ ti;j " ti;j"1, the change in time between the cur-
rent and previous assessment. Under this assumption, the transi-
tion probabilities have closed-from solutions, following Pinsky
and Karlin (2010),

Pð0; 1 j dijÞ ¼ 1" Pð0; 0 j dijÞ ¼
k

kþ l
½1" expð"ðkþ lÞdijÞ'

and

Pð1; 0 j dijÞ ¼ 1" Pð1; 1 j dijÞ ¼
l

kþ l
½1" expð"ðkþ lÞdijÞ':

Note that these transition probabilities can be used to construct the
likelihood function for the observed outcomes y in an MSM
model, as well as the probability of transitioning between hidden
states h in a continuous-time HMM. In either case, the model is
equipped to handle unbalanced, unequally spaced assessment
times in which the exact time of transition is unknown (i.e., transi-
tion times are interval-censored).

In order to identify covariates associated with transitions
between discrete states, we embed covariate dependent transition
rates, similar to Jones et al. (2006) and Koslovsky et al. (2018).
Let xij ¼ ðxij1; . . . ; xijpÞ0 represent a p-dimensional vector of
observed covariates or risk factors, for the ith subject at the jth

assessment time. Then, the transition rates k and l can be redefined
as k ¼ kij ¼ expðk0 þ _x 0

ijbkÞ and l ¼ lij ¼ expðl0 þ _x 0
ijblÞ,

where k0 and l0 are interpreted as the log baseline hazards for
transitioning between states, and _x ij ¼ ð _xij1; . . . ; _xij _pÞ0 is a subset
of xij with _p# p. Similarly, bk ¼ ðbk;1; . . . ; bk; _pÞ

0 and bl ¼
ðbl;1; . . . ; bl; _p Þ

0 represent log hazard ratios for their corresponding
covariates. Under this construction, time-varying covariates are
assumed constant between assessment times, and the model can
readily handle time-invariant or baseline covariates as well. Addi-
tionally, each covariate is allowed to have different relations with
each transition, and the estimated effects are fixed across time.
Additionally, the previous value of time-varying covariates could
be used to assess transitions, however, longer lags in covariate pat-
terns would violate the Markovian assumption. Lastly, initial state
probabilities may be treated as nuisance parameters when inference
is focused on transitions, similar to our setting (Benoit et al.,
2016), assumed to be subject-specific, or specified to depend on
baseline covariates (Zhou et al., 2020). We assume similar initial
state probabilities, p1, across all subjects,

p1ðhi1 ¼ 1Þ ¼ 1" p1ðhi1 ¼ 0Þ ¼ p:

In our simulation study below, we demonstrate the model’s insen-
sitivity to this assumption on variable selection performance for
transitions and emissions.
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Emission Probabilities

We model the relation between observed (or reported) states (typi-
cally referred to as emission data in the context of HMMs) and hidden
states using a logistic regression framework. We assume that each
observed outcome, yij, is independent of all previous observations and
the hidden processes prior to time tij, conditional on the hidden state,
hij. Within the logistic framework, we model “success” as a truthful, or
accurate, response, similar to Bureau et al. (2003),

f ðyij j hij ¼ 0Þ ¼ x1"yij
0;ij ð1" x0;ijÞyij

f ðyij j hij ¼ 1Þ ¼ xyij
1;ijð1" x1;ijÞ1"yij ;

where x0,ij and x1,ij represent the probability of a matched hidden
and observed state (i.e., a measurement collected without error).
While this framework accounts for potential measurement error in
the reported outcomes, it is important to note that it does not dif-
ferentiate between different sources of measurement error. To
account for covariate effects on the emission process, the emission
probabilities can be modeled using a logit function as follows,

logitðx!;ijÞ ¼ log
x!;ij

1" x!;ij

# $
¼ b!;0 þ €x ij

0b! ; ! ¼ 0; 1;

where €x ij ¼ ð€xij1; . . . ;€xij€pÞ0 with €p # p. Note that with this
parameterization, our model allows different sets of covariates to
be associated with transitions and emissions. Here, b!,0 and b! ¼
ðb!;1; . . . ;b!;€pÞ

0 are interpreted as the baseline and covariate spe-
cific log odds ratios for properly reporting the outcome, respec-
tively. A graphical representation of the relationship between
hidden and observed states is presented in Figure 1.

Prior Specification

To identify risk factors associated with transitions between dis-
crete states and accurately reporting outcomes, we impose spike-
and-slab priors for each of the K regression coefficients
b0 ¼ ðb0k; b

0
l; b

0
0; b

0
1Þ, where

bk ( ckNð0; vkÞ þ ð1" ckÞd0ðbkÞ; k ¼ 1; . . . ; 2 _p þ 2€p ¼ K

(Brown et al., 1998; George & McCulloch, 1997). In general,
spike-and-slab prior distributions are composed of a mixture of a
diffuse distribution (slab) and a Dirac delta function at zero
(spike), d0. While other sparsity inducing priors are available (Van
Erp et al., 2019), we chose the spike-and-slab prior since it forces
nonactive terms to zero and explicitly provides inference on each
covariate’s posterior probability of inclusion. Here, we assume the
slab follows a N(0,vk), where vk is diffuse to allow active covariates
to be freely estimated. A latent inclusion indicator, ck [ {0,1}, is
assigned to each regression coefficient, which represents whether
or not the corresponding covariate is excluded or included in the
model. We assume that each of the ck in the ð2 _p þ 2€pÞ -dimen-
sional inclusion indicator vector c0 ¼ ðck0; cl0; c00; c10Þ follows a
Bernoulli distribution with sparsity parameter hk [ [0,1],

f ðck j hkÞ ¼ hckk ð1" hkÞ1"ck :

By assuming a conjugate Betaðak; bkÞ distribution for the hk, we
can integrate out hk such that the inclusion indicator’s marginal
prior distribution is

pðckÞ ¼
Betaðck þ ak; 1" ck þ bkÞ

Betaðak; bkÞ

¼ Cðck þ akÞCð1" ck þ bkÞCðak þ bkÞ
Cð1þ ak þ bkÞCðakÞCðbkÞ

:

The hyperparameters ak and bk control the sparsity of the
model. The beta-binomial prior is commonly used to model
inclusion indicators when no other information regarding a
covariate’s inclusion in the model is known. In settings where
additional covariate information or functional relationships
between covariates are present, logistic and Markov random
field priors are often employed (Stingo et al., 2010; Stingo &
Vannucci, 2011). Note that some or all of the covariates can be
forced into both levels of the model by fixing their correspond-
ing inclusion indicator ck 5 1. To finish the prior specification
of our model, we let the baseline transition and emission varia-
bles k0, l0, b0,0, and b1,0 follow a normal distribution with
mean 0 and variance v0, where v0 is diffuse so that the intercept
terms are freely estimated.

Posterior Inference

For posterior inference, we implement a Metropolis-Hastings
within Gibbs algorithm. The full joint model is defined as

pðH j y;h;XÞ

/
Y_N

i¼1

pðhi; yi jxi;HÞpðb j cÞpðcÞpðk0Þpðl0Þpðb0;0Þpðb1;0Þ;

whereH ¼ fb; c;k0; l0; b0;0; b1;0g and X represents the
P_N

i¼1
ni 3 p

matrix of covariates, with xi containing the ith subject’s observed
covariates. The joint likelihood of the observed data, yi ¼
ðyi1; . . . ; yij; . . . ; yiniÞ

0, and hidden state sequence, hi ¼ ðhi1; . . . ;
hij; . . . ; hiniÞ

0, is

pðhi; yi jxi;HÞ ¼ p1ðhi1Þf ðyi1 j hi1; €x i1Þ
Yni

j¼2

qðhi;j"1; hij j dij; _x ijÞf ðyij j hij; €x ijÞ:

We use the Pólya-Gamma augmentation technique of Polson
et al. (2013) to efficiently sample the posterior distribution for
emission parameters in the logistic regression model because it
maintains interpretability of regression coefficients as log odds
ratios. Hidden states are sampled using the scaled forward-back-
ward algorithm (Scott, 2002). Inclusion indicators and regression
coefficients are jointly updated using an Add/Delete step, follow-
ing Savitsky et al. (2011).

The MCMC sampler used to implement the proposed HMM,
as well as an MSM model, is outlined below in Algorithm 1. A
more detailed description of the MCMC steps as well as model
derivations are provided in the online supplemental materials.
After burn-in and thinning, the remaining samples obtained from
running Algorithm 1 for M iterations are used for inference. To
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determine a risk factor’s inclusion in the model, its marginal pos-
terior probability of inclusion (MPPI) is determined by calculat-
ing the average of its respective inclusion indicator’s MCMC
samples. Commonly, covariates are included in the model if their
MPPI exceeds .50, often referred to as the median model
approach (Barbieri & Berger, 2004), or a Bayesian false discov-
ery rate (BFDR) threshold, which controls for multiplicity (New-
ton et al., 2004).

Algorithm 1: MCMCAlgorithm Used for MSM and
HMMs

1. Input data y and X
2. Initiate b; c, p, l0, k0, b0,0, and b1,0
3. Set HMM equal to True or False for hidden or multistate Mar-
kov model, respectively.

4. for iteration m ¼ 1; . . . ;M do
5. if HMM then
6. Run a forward-backward algorithm to simulate h given cur-

rent b and c (Scott, 2002)
7. end if
8. Jointly update bk; bl; ck, and cl with a Between step (Savit-

sky et al., 2011)
9. Perform a Within Step for bk; bl, l0, and k0 with a Metropo-

lis-Hastings update (Savitsky et al., 2011)
10. if HMM then
11. Jointly update b0; b1; c0, and c1 with a Between step (Savit-

sky et al., 2011)
12. Perform a Within Step for b0; b1; b0;0, and b1,0 with a Pólya-

Gamma update (Polson et al., 2013)
13. end if
14. end for

Label Switching

HMMs are subject to label switching, as the likelihood of
the data is invariant to label permutations (Redner & Walker,
1984; Scott, 2002). Label switching occurs due to the noniden-
tifiability of the hidden components, meaning the label
assigned to each cluster (true smoking or nonsmoking status in
our case study) is meaningless and can cause inferential chal-
lenges when labels for distinct clusters swap throughout the
MCMC iterations. In practice, label switching is typically
diagnosed via jumps in trace plots in addition to multimodal
density plots for parameters. When the proportion of observa-
tions that are misreported is known to be low, another way to
check for this phenomenon in two-state models is to assess the
correspondence between estimated and observed states. There
are a variety of techniques to handle label switching, including
parameter constraints to break the symmetry of the likelihood
and relabeling algorithms (Jasra et al., 2005; Papastamoulis,
2015; Stephens, 2000). In simulation, we only observed label
switching when our method was applied to data with a high
proportion of misreported outcomes (i.e., low baseline emis-
sion probabilities). While a somewhat crude approach, we
found that simply seeding the MCMC algorithm at the maxi-
mum likelihood estimate solved any label switching issues in
low emission probability settings. In our contributed R pack-
age, users are able to accommodate label switching in their
analyses by constraining the model space so that one of inter-
cept terms in the transition (i.e., k0 and l0) and/or emission (i.
e., b0,0 and b1,0) levels of the model is higher than the other, in
addition to controlling where the model is initialized. For
example in our case study, we might set b0;0 > b1;0, under the
assumption that someone truly in a nonsmoking state would be
more likely to report accurately.

Figure 1
Graphical Representation of the Assumed Dependence Structure in the Hidden Markov Model for the Observed
(yij) and Hidden (hij) States for Subject i

Note. See the online article for the color version of this figure.
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Case Study

For the case study, we applied our proposed method to identify
environmental, affective, behavioral, social, and baseline factors
associated with transitions between smoking states and poten-
tially misreporting smoking behaviors in data collected in the
PREVAIL II study. Details of the potential risk factors explored
in this analysis are found in the online supplemental materials.
For this analysis, data were collected on 198 subjects with a me-
dian number of 116 (80–131 IQR) assessments each. Reported
momentary smoking, the outcome of interest, is defined as
whether or not a subject reported smoking in the 4 hr prior to the
current EMA, capturing momentary smoking behaviors during
waking hours. However at each EMA, a subject was prompted
on their current psychological, social, environmental, and behav-
ioral status. Thus, to maintain temporality, we assume that the
probability of transition to the current state from the previous
state (in the latent space) depends on the covariates observed at
the previous state. Similar temporal assumptions have been
made previously in smoking behavior research studies (Bolman
et al., 2018; Koslovsky et al., 2018; Minami et al., 2014; Shiff-
man et al., 1996). Under this assumption, regression coefficients
are interpreted as log hazard ratios of momentary smoking by the
next assessment for a particular risk factor. In this analysis, the
initial hidden state represents the first (true) smoking status for
subjects after a scheduled quit attempt. Thus, we found the
assumption of similar nonsmoking probabilities immediately af-
ter a quit attempt reasonably justified. We set vk 5 5, which pla-
ces a 95% prior probability of included regression coefficients
between a hazards/odds ratio of .01 and 80. We assumed a 10%
prior probability of inclusion for each covariate, parameterized
by ak 5 1, and bk 5 9. This weakly informative prior assumption
reflects the exploratory nature of our study aimed at learning
potential relations between risk factors and smoking behaviors
with little information regarding their occurrence in the presence
of other risk factors. For posterior inference, we initiated the
MCMC algorithm with the null model (i.e., b ¼ 0). We ran the
MCMC sampler for 80,000 iterations, using the first 25,000 as
burn-in and thinning to every 25$25^{th}$ iteration. Trace plots
of the parameters’ posterior samples indicated good convergence
and mixing. Additionally to assess convergence, we ran the
model, initiated at the maximum likelihood estimate for regres-
sion coefficients using the msm package in R (Jackson, 2011).
After burn-in, the correlation for the MPPIs between the two
chains was 98.4%, and the multivariate Gelman-Rubin statistic
(often referred to as the multivariate potential scale reduction
factor) was less than 1.2 for the b selected in both models (Gel-
man & Rubin, 1992), further demonstrating that the MCMC pro-
cedure was working properly and the chains converged. The
final results were based on the combination of the two chains
post-burn-in and thinning, resulting in 4,400 posterior samples
for inference. Inclusion in the model for both transition and
emission terms was determined using a BFDR threshold of 5%,
corresponding to an MPPI $ .79. Goodness-of-fit for the com-
bined chains was assessed using posterior predictive checks, in
which we compared replicated data sets from the posterior pre-
dictive distribution of the model to the observed data as
described in Gelman et al. (2000). Details of the model fit

assessment are found in the online supplemental materials. No
label switching issues were observed in our case study.

Results of the postquit analysis are found in Table 1. We
observed that the contingency management (CM) treatment plan
was protective against transitions from nonsmoking to smoking
states. Similar results were found in Koslovsky et al. (2018) with a
traditional MSM model. We also identified urge to smoke as hav-
ing a positive relation with transitions from smoking to nonsmok-
ing states. While similar results were found in Koslovsky et al.
(2018), these findings may reflect inconsistencies typically found
in the relation between urge to smoke and smoking behaviors
(Wray et al., 2013). Participants in the present study were provided
with nicotine replacement therapy, including nicotine gum, and
were instructed to use it when they had an urge to smoke. Nicotine
gum is associated with reduction of acute craving in response to
exposure to smoking cues (Shiffman et al., 2003), thus it is possi-
ble that consumption of nicotine gum may act as a mediator
between urge to smoke and smoking behavior. Nicotine gum use
was not measured on a momentary basis, but future analyses may
provide insight as to why urge to smoke is associated with both
transitions to smoking and nonsmoking states. In addition to iden-
tifying risk factors associated with transitions between discrete
smoking states, our model is also able to identify factors associ-
ated with properly reporting their nonsmoking or smoking status
(see Table 1). As the accurate reporting of smoking profoundly
impacts our understanding of the psychological, social, and envi-
ronmental contexts that precede high risk moments for smoking
lapse, intervention content or decision rules based on false report-
ing of smoking status may be inadequate or ineffective. This
model provides a useful method for accommodating potential
reporting bias in situations where remote biochemical verification
of smoking status is not possible.

Validation Study

In practice, it is difficult to validate subjects’ true smoking
behaviors due to limitations in remote biochemical verification
technology (e.g., cost and lack of portability). However, in our
case study, subjects’ smoking behaviors were biochemically vali-
dated by collecting their expired carbon monoxide (CO) levels at
weekly scheduled in-person follow-ups. While not necessary for
the implementation of our proposed method, we used subjects’
expired CO levels to assess misreported smoking behaviors and to
compare to the misreporting estimated by our proposed approach.
Because CO levels tests indicate smoking in the previous 24 hr,
only a fraction of the reported smoking behaviors collected via
EMAs were available for validation.

For the purposes of validation, smoking status was based on
self-report of smoking/abstinence during the past 24 hr on the quit
day and during the past 7 days at all follow-ups thereafter. For
those who self-reported smoking at each weekly follow-up visit,
CO was not further considered even if it was below the threshold
(i.e., individuals are not likely to report smoking when they are
abstinent). For those who self-reported abstinence, CO had to be
10 ppm or less on the quit day, and 6 ppm or less on subsequent
tests to verify abstinence.

In total, 824 CO verifications were performed across the study
period for this sample, with an average (SD) of 4.20 (1.28) per
subject. Only 686 of the 824 CO tests could be used to validate at
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least one EMA in the previous 24 hr, with a total of 1,831 EMAs
collected within the 24-hr windows prior to the CO tests. We
define a misreported smoking (nonsmoking) behavior as a passed
(failed) CO test, but at least one (no) reported smoking behavior
in the 24 hr prior to verification. A total of 48 (7.02%) misreported
smoking and 117 (17.1%) misreported nonsmoking incidences
were observed among all 686 CO verifications, with an average
(SD) of .25 (.63) and .60 (.89) per person, respectively. For com-
parison, we estimated each hidden state, hij, marginally by averag-
ing over their corresponding MCMC samples, with estimates
greater than .50 indicating smoking. Using this approach, 314
(2.1%) of the 14,736 estimated nonsmoking hidden states were
misreported as smoking states and 851 (16.2%) of the 5,254 esti-
mated smoking states were misreported as nonsmoking states. For
the EMAs that fell within the 24-hr CO verification periods, 28
(2.1%) of the 1,348 estimated nonsmoking hidden states were mis-
reported as smoking states, and 66 (13.7%) of the 483 estimated
smoking states were misreported as nonsmoking states. For the
EMAs that fell outside of the 24-hr CO verification periods, 286
(2.1%) of the 13,388 estimated nonsmoking hidden states were
misreported as smoking states, and 785 (16.5%) of the 4,771 esti-
mated smoking states were misreported as nonsmoking states.
Research on the validity of self-reported smoking has demon-

strated that self-reports from participants in intervention studies
can have lower specificity due to biochemical tests’ limited ability
to detect very low levels of smoking and less recent smoking (Pat-
rick et al., 1994). Therefore, the small number of nonsmoking
states identified by the CO test that were misreported as smoking
states may be due to errors in the measurement of CO levels. In
the PREVAIL II study, participants in the CM treatment arm had
the opportunity to earn gift cards for self-reported and biochemi-
cally verified abstinence at each visit. We observed that self-
reported smoking status on EMAs occurring within the 24-hr CO
verification period had higher concordance with CO results than
self-reported status on EMAs outside of the 24-hr verification pe-
riod. Future research is needed to determine if this is due to partic-
ipants’ awareness of their smoking status being biochemically

validated, or if it is reflective of day to day variation in smoking
and abstinence states during a quit attempt. In Figures 2 and 3, we
present an example of how our model was able to catch a misre-
ported smoking behavior by a subject.

Sensitivity Analysis

Sensitivity analyses are an integral part of a thorough Bayesian anal-
ysis which allow researchers to understand how prior and likelihood
specification may influence posterior inference. See van de Schoot et
al. (2021) for general guidelines. To investigate the HMM’s sensitivity
to prior specification, we set each of the hyperparameters to default
values and then evaluated the effect of manipulating each term on the
results obtained in the case study. For the default parameterization, we
used the settings described in the case study. We ran our MCMC algo-
rithm for 80,000 iterations, treating the first 10,000 iterations as burn-
in and thinning to every $25^{th}$ iteration. For each of the transition
and emission effects, inclusion in the model was determined using a
BFDR threshold of 5%.

Because the true model is never known in practice, we compared the
results from the case study with each model parameterization in terms
of overall sparsity levels and the overlap in selected covariates. Specifi-
cally, we report the total number of terms associated with transitions
and emissions as well as the proportion of included and excluded terms
in the case study results that were also included or excluded by each
parameterization for both transitions (T-IN and T-EX) and emissions
(E-IN and E-EX), respectively. Results of the sensitivity analysis are
reported in Table 2. We observed little sensitivity to the variance speci-
fied for regression coefficients for both transition and emission terms.
However, we found some sensitivity to the prior probability of inclu-
sion for transition and emission terms, a potential artifact of the rela-
tively weak associations identified for some of the risk factors. In the
following section, we provide recommendations for hyperparameter
specifications based on the simulation and sensitivity analysis results.

Additionally to assess the sensitivity of the results to model mis-
specification, we applied the MSM model with similar hyperpara-
meter settings as the HMM to the case study data. This approach

Table 1
Case Study Results

Transitions

Risk Factor N ! S [95% CI] Risk Factor S ! N [95% CI]

Female 2.387 [2.006, 2.811] Urge 1.381 [1.206, 1.612]
Non-White 1.406 [1.181, 1.677] Availability 0.449 [0.357, 0.551]
CM Treatment 0.348 [0.286, 0.419] Frustrated 0.823 [0.739, 0.908]
Urge 1.685 [1.406, 1.934] Age 1.401 [1.212, 1.630]
Self-efficacy 0.735 [0.656, 0.830] HSI 0.701 [0.637, 0.775]
Age 1.343 [1.156, 1.560]

Emissions

Risk Factor Properly report nonsmoking Risk Factor Properly report smoking state

Social 0.209 [0.061, 0.513] Social 2.059 [1.552, 2.861]
Alcohol 0.184 [0.088, 0.383] Restrict 0.485 [0.339, 0.671]
Availability 0.432 [0.180, 0.827] Stress 1.303 [1.163, 1.475]
Self-efficacy 1.899 [1.393, 2.601] Availability 1.872 [1.562, 2.270]

Self-efficacy 0.735 [0.627, 0.853]

Note. N = nonsmoking; S = smoking; CM = contingency management; HSI = heaviness of smoking index. Estimated hazard ratios and corresponding
95% credible intervals [CI] of selected risk factors for transitioning between N ! S and S ! N states and covariate specific odds ratios and corresponding
95% CIs of properly reporting nonsmoking and smoking status for the PREVAIL II study postquit date observations.
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ignores any reporting errors which may produce biased results for
estimated hazards ratios for transitions. Thus, we compare the
results of the two methods in terms of overlap between identified
associations. The MSM model identified a majority of the relations
between covariates and transitions between smoking states found
with the HMM. However, the MSM model also identified four addi-
tional relations for transitions between nonsmoking and smoking
states, as well as two additional relations for transitions between
smoking and nonsmoking states. In our simulations, we found
that the MSM model, in the presence of reporting errors, was
prone to higher false positive rates in addition to biased esti-
mates. Thus, it was not surprising that the MSM model poten-
tially overselected.

Simulation Study

We evaluated the variable selection performance of our model on
simulated data and compared our method with a continuous-time

MSM model in various scenarios, averaging results over 30 replicate
data sets for each scenario. Recall that the MSM model is equivalent
to removing the emission layer of the HMM and treating the
observed states as truth for transitions. In Scenario 1, we mimicked
the structure of the case study data, generating data for _N ¼ 100 sub-
jects with ni 5 31 assessments, corresponding to ni – 1 = 30 transi-
tions. At each assessment, we simulated _p ¼ 30 potential covariates
for the transitions process and €p ¼ 20 potential covariates for the
emission process. In each of the replicate data sets, the first four tran-
sition covariates and the first two emission covariates were binary
indicators. The rest of the covariates were simulated from a multivar-
iate normal distribution with mean 0 and variance R, with Rss 5 1
and Rst 5 0. Covariates were standardized prior to analysis. In the
true model, we set 20% of the covariates active. Regression coeffi-
cients for active terms were randomly set to 6{.7, .85, 1.0}, corre-
sponding to odds/hazards ratios ranging from .37 to 2.71. We
generated 90% accuracy levels for the observed outcomes, yij, on av-
erage, by setting the intercept terms in the emission models, b0,0 and

Figure 2
Reported and Estimated Smoking Behaviors Compared to the CO Verification Results for a Select
Subject in the Case Study
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Note. CO = carbon monoxide. Upper plot: Blue line represents reported smoking behaviors. Lower plot: Red
line indicates estimated hidden behaviors with the proposed model. Shaded windows represent the 24 hr peri-
ods prior to CO verification test. See the online article for the color version of this figure.
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b1,0, to logit(.9). Additionally, we investigated 60%, 80%, 95%, and
99% accuracy levels. Moreover, for a baseline comparison, we eval-
uated the MSM model with 100% accurately observed states. Base-
line transitions rates, l0 and k0 were set to log(.5). Subjects were
initialized in a 1 or 0 state with equal probability. In subsequent sce-
narios, we altered various aspects of Scenario 1 to further investigate
the performance of our model. In Scenario 2, we only generated _N ¼
50 subjects with ni 5 16 assessments, corresponding to 15 transi-
tions. In Scenario 3, we increased the potential covariate space with
_p ¼ €p ¼ 100. In Scenario 4, we reduced the effect sizes to 6{.2,
.35, .5}. Lastly, in Scenario 5, we investigated the performance
of the model with correlated covariates (i.e., Rst ¼ x j s"t j where
x5 .6).
When running the MCMC algorithm for both HMMs and MSM

models, we set the hyperparameters for the prior probability of
inclusion hk to be noninformative (i.e., ak 5 1 and bk 5 1, which
places equal probability on selection or exclusion for each covari-
ate). We set the regression coefficient prior variance vk 5 5 in

both models, which assumes a prior probability of included regres-
sion coefficients between a hazards/odds ratio of .01 and 80. We
used a normal proposal distribution for bk with mean equal to the
current MCMC iteration and variance one. Both the HMMs and
MSM models were initiated with all regression coefficients set to
zero, except for the intercept terms which were set to one. For the
60% baseline emission probability settings, we observed label
switching in some of the replicate data sets. To handle any label
switching issues, emission terms were warmstarted with maximum
likelihood estimates, obtained using the msm package in R. In
each simulation setting, we ran the HMM (MSM) MCMC algo-
rithms for 50,000 (15,000) iterations, treating the first 25,000
(7,500) iterations as burn-in. Inclusion in the model was deter-
mined using the median model approach.

Variable selection performance was evaluated via true positive
rate (TPR), false positive rate (FPR), and Matthew’s correlation
coefficient (MCC) for transition and emission effects separately.
These metrics are defined as

Figure 3
Reported and Estimated Hidden Smoking Behaviors for the Subject in Figure 2 from September 23
at 6:00 p.m. to September 26 at 12:00 p.m
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Note. CO = carbon monoxide. Shaded windows represent the 24 hr period prior to CO verification test.
Results demonstrate our method's ability to identify discrepancies in reporting and true smoking behaviors, as
validated by the expired CO test. See the online article for the color version of this figure.
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FPR ¼ TP
FN þ TP

FNR ¼ FP
FPþ TN

MCC ¼ TP3TN " FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ;

where TN, TP, FN, and FP represent the true negatives, true posi-
tives, false negatives, and false positives, respectively. In addition to
selection performance, we also evaluated the models’ ability to esti-
mate regression coefficients accurately as well as identify discrepan-
cies between hidden and observed states. Specifically, we compared
the models in terms of absolute relative bias for active regression
coefficients associated with transitions between states, calculated as
the absolute value of the difference in estimated and true regression
coefficients divided by the true regression coefficient, and the pro-
portion of mismatched hidden and observed states. Hidden states
were estimatedmarginally following Scott (2002).
The variable selection results of our simulation study are presented

in Tables 3 and 4. Table 3 presents the results for the transition terms.
For all baseline emission probabilities, the HMM outperformed the
MSM model in terms of the TPR, FPR, and MCC. We observed a
positive relation between the MCC for transition terms and the per-
centage of accurately reported outcomes. For 60% to 90% baseline
emission probabilities, the model obtained around a 10% FPR for tran-
sition terms, which decreased to less than 5% above a 95% baseline
emission probability. Similarly, we observed MCC values above 70%
when applied to data with more than 95% accuracy levels. We found
that smaller sample sizes (Scenario 2), larger covariate spaces (Sce-
nario 3), and correlation among the covariates (Scenario 5) reduced the
TPR and overall performance of the model for transition terms based
on MCC compared with Scenario 1. Both the TPR and FPR decreased
with smaller effect sizes (Scenario 4), as expected.
Table 4 contains the results for the emission terms. Here, we

found higher TPRs and MCC values for accuracy levels around
80%–90%. The FPR was controlled at, 4% for all reporting error
percentages. We found that the selection performance for emission
terms declined above a 90% baseline emission probability. As the
proportion of hidden and observed states matching increases, the
model is unable to provide accurate results for variable selection
in the emission portion of the model due to the reduced variability
in the outcomes given the hidden states. Again, we observed
poorer selection performance overall for Scenarios 2–5 compared
with Scenario 1.

Table 5 contains the results of the bias comparison between the
MSM and HMM. Compared with the MSM model, the HMM had
lower absolute relative bias for moderate levels of misreporting
and relatively equal amounts when there were large amounts of or
little misreporting. We observed a sixfold increase in mean
absolute relative bias from 100% to 60% baseline emission prob-
abilities using the HMM. Table 6 presents the results for the pro-
portion of matched hidden and estimated states for various
baseline emission probabilities. Here, we observed that the pro-
portion of matched states increased with baseline emission
probabilities.

Overall, our simulation results show how ignoring potential
measurement error can negatively affect variable selection per-
formance and estimation accuracy. Similar to other variable selec-
tion methods, we also found limited performance of our model for
small sample sizes and correlated covariates. In practice, research-
ers can control the sparsity level of the model by adjusting the
prior probability of inclusion. For example, our simulation study
suggests that higher FPRs are obtained with stronger correlations
between covariates. To reduce the overall FPR, researchers could
impose a smaller prior probability of inclusion to help screen out
false signals. Likewise, if the research objective is to generate a
larger pool of covariates to validate in future studies, a noninfor-
mative prior (which does not induce any sparsity) could be imple-
mented. Our simulation study demonstrates that variable selection
and estimation performance declined for both models when
applied to data with high levels of misreporting. While these
results were not surprising (i.e., garbage in, garbage out), we rec-
ommend using other strategies to improve data quality prior to
analysis or limiting inference in these settings.

To assess the proposed model’s sensitivity to hyperpara-
meter specification, we set each of the hyperparameters to
default values and then evaluated the effect of manipulating
one term at a time on selection performance. For the default
parameterization, we set the prior probability of inclusion
hyperparameters ak 5 1 and bk 5 1 and the regression coeffi-
cient prior variance to vk 5 5, similar to our simulation study.
Additionally, we assessed the sensitivity of the selection
results to the assumption of similar initial state probabilities
across subjects. To evaluate this, we applied the proposed
model to data simulated similarly to Scenario 1 with subject-
specific initial hidden state probabilities.

We evaluated the model’s sensitivity to prior settings using data
generated in the simulation study with a baseline emission proba-
bility of 90%. We ran the MCMC algorithms for 50,000 iterations,
using the first 25,000 iterations as burn-in and the other 25,000
iterations for inference. To initialize each model, we set all regres-
sion terms to be excluded except for the intercept terms, similar to
the simulation study.

Results of the sensitivity analysis are presented in Table 7.
Holding the prior variance vk 5 5 constant, we found that decreas-
ing (bk 5 4, 9, and 99) the prior probability of inclusion decreased
the average number of terms selected, as expected. As mentioned
previously, the prior sparsity level selected by the researcher
should accurately reflect the research objectives and ideally be
determined prior to analysis. Holding bk 5 1, we observed little
variation in selection performance across different values of the
slab prior, vk. Specifically, the TPR, FPR, and MCC hovered
around 60%, 10%, and 50% for the transition terms, respectively.

Table 2
Results of the Sensitivity Analysis for the Case Study

Measure
ak = 1,
bk = 1

ak = 1,
bk = 99 vk = 1 vk = 10

# Transitions selected 19 7 12 8
T-IN 0.579 1.000 0.917 1.000
T-EX 1.000 0.918 1.000 0.938
# Emissions selected 11 7 9 9
E-IN 0.818 1.000 1.000 1.000
E-EX 1.000 0.953 1.000 1.000

Note. T-IN, T-EX, E-IN, and E-EX represent the proportion of included
and excluded terms in the case study results that were also included or
excluded by each parameterization for both transitions and emissions,
respectively.
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Additionally, the TPR, FPR, and MCC hovered around 80%, 5%,
and 80% for the emission terms, respectively. Thus, we recom-
mend a moderately diffuse prior for regression coefficients in
application. Lastly, we observed little to no impact of the equal
initial state probability assumption on selection performance.

Conclusions

In this article, we have developed a fully Bayesian variable
selection approach for continuous-time hidden Markov models.
Our method treats reported outcomes as emissions from a subject’s
true, latent state. By employing spike-and-slab variable selection
priors, our method is able to identify risk factors for subjects tran-
sitioning between discrete latent states as well as risk factors
potentially associated with them misreporting their true state. Our
method takes advantage of data augmentation techniques for pos-
terior inference to reduce computation time without sacrificing
model interpretation. We have applied our method to smartphone-
based ecological momentary assessment data collected in a

randomized controlled trial designed to investigate the efficacy of
a contingency management intervention for smoking cessation in a
population of socioeconomically disadvantaged smokers. Our
results support prior research and demonstrate the potential effec-
tiveness of financial incentives (contingency management) on
short-term smoking cessation outcomes (Notley et al., 2019). In
addition, we have identified several key variables associated with
transitions to smoking states during a quit attempt, including mo-
mentary factors such as interacting with another smoker, urge to
smoke, and self-efficacy that may be important targets for future
interventions. These findings are consistent with other studies that
have used EMAs to explore the psychological, social, and environ-
mental factors associated with smoking during a quit attempt. For
example, multiple studies have identified smoking urge (Chandra
et al., 2011; Shiffman et al., 2009), proximity to other smokers
(Piasecki et al., 2014; Shiffman et al., 2007), and low motivation
to quit (Businelle et al., 2014; Hébert et al., 2021) as predictors of
smoking lapse. The method presented here has unique implica-
tions for intervention development in that we examine not only

Table 3
Simulation Results for Comparison of Variable Selection Performance on Transition Terms from 0 ! 1 (bk) and 1 ! 0 (bl) Using
HMMs and MSM Models

60% 80% 90% 95% 99% 100%

Transitions Measure HMM MSM HMM MSM HMM MSM HMM MSM HMM MSM HMM MSM

0 ! 1 TPR 0.205 0.161 0.400 0.444 0.594 0.522 0.694 0.644 0.906 0.856 0.978 0.967
FPR 0.090 0.118 0.121 0.167 0.113 0.168 0.033 0.111 0.004 0.036 0.006 0.007
MCC 0.137 0.044 0.293 0.270 0.476 0.343 0.717 0.536 0.930 0.829 0.974 0.963

1 ! 0 TPR 0.228 0.244 0.461 0.411 0.578 0.544 0.733 0.678 0.889 0.839 0.956 0.944
FPR 0.111 0.146 0.125 0.182 0.099 0.194 0.039 0.125 0.004 0.024 0.004 0.008
MCC 0.127 0.113 0.350 0.224 0.498 0.329 0.739 0.536 0.920 0.843 0.962 0.946

Scenario 2 Scenario 3 Scenario 4 Scenario 5

Transitions Measure HMM MSM HMM MSM HMM MSM HMM MSM

0 ! 1 TPR 0.322 0.328 0.339 0.406 0.478 0.422 0.483 0.472
FPR 0.058 0.136 0.069 0.126 0.025 0.058 0.103 0.142
MCC 0.339 0.208 0.239 0.195 0.572 0.437 0.404 0.333

1 ! 0 TPR 0.306 0.339 0.411 0.467 0.506 0.411 0.533 0.489
FPR 0.083 0.140 0.062 0.128 0.036 0.079 0.119 0.139
MCC 0.270 0.216 0.309 0.228 0.562 0.380 0.413 0.359

Note. HMM = hidden Markov model; MSM = multistate Markov model; TPR = true positive rate; FPR = false positive rate; MCC = Matthew’s correla-
tion coefficient. Results are presented for Scenario 1 for each baseline emission probability (60%, 80%, 90%, 95%, 99% and 100%) and for Scenarios 2–5
averaged across 30 replicate datasets.

Table 4
Simulation Results for Variable Selection Performance on Emission Terms

Emissions Measure 60% 80% 90% 95% 99% S2 S3 S4 S5

b0 TPR 0.533 0.792 0.733 0.617 0.167 0.250 0.325 0.142 0.692
FPR 0.042 0.017 0.021 0.010 0.008 0.023 0.053 0.004 0.025
MCC 0.598 0.828 0.781 0.748 0.440 0.398 0.255 0.500 0.750

b1 TPR 0.683 0.917 0.792 0.722 0.200 0.258 0.442 0.158 0.758
FPR 0.050 0.010 0.031 0.010 0.010 0.033 0.053 0.015 0.027
MCC 0.681 0.925 0.811 0.790 0.481 0.378 0.334 0.405 0.789

Note. TPR = true positive rate; FPR = false positive rate; MCC = Matthew's correlation coefficient. Results are presented for Scenario 1 using HMMs
for each baseline emission probability (60%, 80%, 90%, 95%, 99% and 100%) and Scenarios 2–5 (S2–S5) averaged across 30 replicate datasets. Emission
coefficients b0 and b1 correspond to covariates associated with properly reporting 0 and 1 states, respectively.
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what factors are associated with lapse, but what factors are posi-
tively associated with transitioning to a nonsmoking state. There-
fore, interventions that seek to prevent factors associated with
lapse, as well as those that actively reinforce factors associated
with transitioning back to a nonsmoking state may improve the
likelihood of a successful smoking cessation attempt.
EMA is limited by self-report, and the potential for response

fatigue and misreporting, whether intentional or not, can signifi-
cantly impact prediction accuracy. In order to improve the delivery
of future mobile health interventions, such as just-in-time adaptive
interventions, it is important to know when and how to deliver
intervention content to maximize impact. We do not suggest or
advocate any particular intervention approach but hope that future
research might be able to investigate how to minimize participant
burden and utilize objective data to prevent the delivery of inter-
vention content when it is not needed. In addition to accounting
for potential misreporting, our method also suggests covariates
that may be associated with reporting errors. These insights may
help researchers assess data quality and design more effective data
collection strategies. While these results highlight the importance
of understanding risk factors’ relations with smoking behaviors
when designing tailored intervention strategies, we recommend
using our method for hypothesis generation in practice and con-
ducting confirmatory studies before generalizing results. Further,
the associations identified in the case study do not imply causal
relations. Because momentary smoking was defined as any
reported smoking behaviors in the 4 hr prior to the EMA, the first
assessment after waking is potentially subject to a ceiling effect.

However, our objective when constructing the outcome was to
capture whether or not a subject had smoked within nonoverlap-
ping epochs during waking hours, following the assumptions of
our model. Thus, the first 4-hr window captures any morning
smoking behaviors if they occurred. Through simulations, we have
demonstrated how our model improves variable selection perform-
ance and estimation accuracy compared to a traditional MSM
model at various levels of reporting errors. As with any analysis,
accurate model inference depends on appropriate model specifica-
tion. In practice, we encourage thorough investigation of posterior
convergence, goodness-of-fit assessment, and sensitivity analyses
prior to drawing inference on the results generated from our model
(i.e., identified misreported outcomes and influential covariates).

Even though we have developed our approach for mHealth
data, the proposed model is applicable to other longitudinal set-
tings in which transitions between two-discrete states are meas-
ured potentially with error. We provide code to simulate data
similar to our simulation study and implement our proposed
method in our contributed R package, HMMbvs, available at
https://github.com/mliang4/HMMbvs. While developed for two-
state continuous HMMs, extensions to three and four state are
readily available because closed-form solutions for transition prob-
abilities exist (Li & Chan, 2006). For larger state spaces, approxi-
mation methods for solving the ordinary differential equations for
transition probabilities would be required. By using a full MCMC
approach, our method provides inherent estimates for model
uncertainty, compared with alternative variable selection methods

Table 5
Results of the Absolute Relative Bias Assessment

Model 60% 80% 90% 95% 99% 100%

HMM 0.86 0.70 0.55 0.31 0.16 0.15
MSM 0.83 0.77 0.66 0.50 0.22 0.14

Note. HMM = hidden Markov model; MSM = multistate Markov model.
Results are averaged over active transition terms across 30 simulated data-
sets for each baseline emission probability (60%, 80%, 90%, 95%, 99%
and 100%) using the proposed MSM and HMMs.

Table 6
Simulation Results for the Proportion of Matched Estimated and
Hidden States

Emission probability Proportion of matched states

60% 0.636 (0.120)
80% 0.835 (0.029)
90% 0.890 (0.014)
95% 0.938 (0.012)
99% 0.982 (0.004)

Note. Results are reported as M(SD) across each simulated baseline
emission probability (60%, 80%, 90%, 95%, and 99%).

Table 7
Sensitivity Results on Simulated Data

vk = 5 bk = 1

Selection measure Measure bk = 4 bk = 9 bk = 99 vk = 1 vk = 10 Random p1

Mean # of selected terms 17.7 15.9 13.0 27.4 22.1 23.8
Transition 0 ! 1 (bk) TPR 0.494 0.422 0.378 0.578 0.589 0.572

FPR 0.072 0.071 0.069 0.107 0.101 0.093
MCC 0.458 0.406 0.368 0.474 0.495 0.489

Transition 1 ! 0 (bl) TPR 0.522 0.450 0.417 0.622 0.556 0.578
FPR 0.076 0.088 0.078 0.119 0.086 0.104
MCC 0.490 0.406 0.385 0.498 0.489 0.482

Properly report 0 state (b0) TPR 0.683 0.650 0.525 0.767 0.700 0.808
FPR 0.010 0.006 0.000 0.029 0.019 0.025
MCC 0.780 0.769 0.706 0.779 0.754 0.822

Properly report 1 state (b1) TPR 0.750 0.717 0.542 0.875 0.725 0.850
FPR 0.010 0.013 0.004 0.033 0.013 0.015
MCC 0.825 0.783 0.735 0.854 0.818 0.869

Note. TPR = true positive rate; FPR = false positive rate; MCC = Matthew's correlation coefficient. Sensitivity results for the specification of the slab
variance hyperparameters, prior probability of inclusion, and random initial probability p1.
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for MSM models which use optimization-based estimation techni-
ques (Koslovsky et al., 2018). However, full inference comes at a
price computationally. In larger model spaces, the MCMC chains
may require more memory than available. To help manage mem-
ory storage, the amount of thinning can be increased. Additionally,
variational alternatives may provide reasonably accurate model
estimates in a fraction of the time. Recently, Koslovsky et al.
(2020) developed a Bayesian, semiparametric logistic regression
model which performs variable selection for varying-coefficient
terms and random effects. Future work could introduce varying-
coefficient terms and random effects into the HMM framework to
investigate how a covariate may vary as a function of another
covariate as well as how effects may vary across subjects.
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